
A Self-Extension Monitoring for Security Management

Heejin Jang and Sangwook Kim
Department of Computer Science, Kyungpook National University

 1370, Sankyukdong, Bukgu, Daegu, 702-010, KOREA
{janghj, swkim}@cs.knu.ac.kr

Abstract

In the coming age of information warfare, information
security patterns take on a more offensive than defensive
stance [1]. However, most existing security systems
remain passive and do not provide an active form of
security protection. It is necessary to develop an active
form of offensive approach to security protection in order
to guard vital information infrastructures and thwart
hackers. This paper presents a Self-Extension Monitoring,
a new approach in monitoring intruders, securing
evidence against hackers and identifying them. It also
proposes an Intruder Identification System (IIS), which is
designed and implemented based on the proposed
technique. The Self-Extension Monitoring approach
minimizes temporal and spatial limitations, making it
possible to collect enough information for disclosure of the
intruder’s identity. A system security administrator can
prevent any unwanted intrusion and re-attack the intruder
by creating and maintaining information regarding the
intruder’s identity through the Self-Extension Monitoring.

Keywords: Monitoring, Security, Intruder
Identification, Replication, Shadowing

1. Introduction

Considerable research efforts have been exerted to

develop a better intrusion detection method. However,
detection alone is not sufficient to prevent the current
threat of abuse amid the rapidly growing network.
Therefore, an intruder identification system technique is
required to identify the hacker and prevent him or her from
making any effective intrusion. A difficult aspect of the
intruder identification is that it is nearly impossible to
promptly identify the intruder because the act is carried
out from a remote host over which we have no control.
Leaving the intruder on-line causes security problems.
Hence, an effective intruder identification technique is
required to examine the behavior of the intruder and

collect the pertinent information for an extended time
without affecting the real system.

An intruder can be identified through retracing by
means of analyzing the log file as well as monitoring the
intruder at the host/network level. The log-based retracing
technique analyzes log files provided by the system and
certifies the name and/or address of the intruder’s system.
It gives intruders enough time to cover up their traces
because the system security administrator has to analyze
the log files manually. It is also difficult to retrace
intruders and analyze the damage on a system because the
analysis normally depends on the experience of a system
security administrator. The Caller Identification approach
is one where a Caller Identification client sends
information regarding a certain user’s network movement
path to a Caller Identification server when logging into the
system via the network[2]. Since each Caller Identification
server is installed in its respective host, this technique is in
fact impracticable. In the case of the system monitoring
technique, it is impossible to collect further information
when the intruder moves beyond the monitoring range.
Thus, the network monitoring technique is at a
disadvantage since it cannot provide information through
real-time analysis.

To identify the intruder accurately, the following
problems must be solved beforehand. A specified period
needed to trace the intruder must first be ensured. That is,
it requires the means to inspect the intruder’s activities
without an intruder recognizing the monitoring. It likewise
needs to minimize restriction of the traceable domain.
Even if the intruder moves to another host, chasing after
the intruder continues.

This paper presents the Self-Extension Monitoring
approach as a solution for meeting the two requirements
described above. The Self-Extension Monitoring observes
the intruder’s activities at the host level. If the intruder
moves into another host, network level monitoring is
carried out through program replication into the host as
needed. This broadens the traceable domain and also
secures time for investigating the intruder by protecting
the host/network itself. That is, it is possible to trace the
intruder, increasing the time and space using the Self-

Extension Monitoring based on the shadowing and
replication mechanism.

Preservation of evidence of intrusion paths and
malicious activities prohibits possible further intrusion.
Analyzing the habits and paths of an intruder for a long
time makes it possible to generate a hacking scenario
database more easily. System security administrators on
the intruder’s path can then investigate together and
eventually identify the intruder.

The remainder of this paper is structured as follows.
Section 2 describes the existing approaches to monitoring
intruders. Section 3 presents the Self-Extension
Monitoring for security management using a shadowing
mechanism. Section 4 describes the architecture and
working model of the Intruder Identification System
designed and implemented in the approach proposed in
this paper. It presents an example of this system wherein
the intruder’s shifting path and his/her real-time activities
are obtained. Finally, section 5 draws some conclusions
and outlines directions for future research.

2. Monitoring Approaches for Security
Management

 There are several monitoring approaches that have been

developed for security management. Their primary
objectives include system/network management or
protection, intrusion detection and intruder identification.
They are largely classified into two groups namely, host-
level monitoring and network-level monitoring[3].

 2.1 Host-level Monitoring

It is the host-level monitoring that observes the

specified user on a single host and records the log.
Movement to an unspecified host makes monitoring
impossible. The tty hijacking method is used to monitor
the user at the host level. Examples of host-level
monitoring tools are ttywatcher[4] and ttymon[5] for the
UNIX system and linspy[6] for the Linux.

The ttywatcher is a utility that serves to monitor and
control users on a single system. It allows the system
security administrator to monitor every tty on the system,
as well as interact with them. When the user logs into a
computer system, the system authenticates him or her,
provides a tty and then runs a shell process. While the
system runs ttywatcher, it is then placed on the higher
level of the shell. Thus, the user loses control over his/her
own terminal as well as over all input streams from the
terminal. Communication between the user and the Unix
system is established via tty, and the ttywatcher creates a
kernel driver. It eavesdrops in the communication between
all login ttys in the system and the kernel using the kernel
driver. An administrator can see all the input from stdin

and output to stdout through the kernel driver. The driver
communicates with the kernel by creating a c-type tty file
on the /dev directory. Since other or group is not given a
read/write permission above the tty file, the ttywatcher
eavesdrops on the other tty with root privilege. The
ttywatcher is useful as a hacker trap for a user with an
illegal account or for intruders. Aside from monitoring and
controlling ttys, individual connections can be logged into
either a raw log file or to a text file. These files can then be
adopted as evidence. Because host-level monitoring does
not have any means to protect the monitoring activity, an
experienced intruder becomes aware that his/her activities
have been exposed.

The ttymon is a stream-based tty port monitor. It
monitors ports, sets terminal modes and line disciplines for
the ports. It also connects users or applications to services
associated with the ports. The ttymon cannot control the
intruder but can monitor the intruder’s behavior.

Host-level monitoring, as mentioned above, just records
logs to watch users and secure evidence of the intrusion. It
is nearly impossible for a system security administrator to
access each host on a large network to collect data.
Although it is possible, it is difficult to decide on which
host a target resides and which activity can be logged by
the host-level monitoring system itself. Therefore, host-
level monitoring cannot effectively protect against
intrusion via several hosts. Since it does not shield the
monitoring activity itself, the intruder easily notices the
fact that he/she is being watched. It also cannot obtain
information any more if the intruder does not access the
host with a monitoring server.

 2.2 Network-level Monitoring

 Because the user monitoring at network level can

examine all logons, it is not necessary to access another
host.

 When the intruder sets up a new connection, the system
security administrator just monitors the intruder’s
connection without accessing the system where the
intruder logs in. Network-level monitoring is passive and
the system operates as though nothing happened.
Monitoring programs such as TCP dump[7], Netlog[8] and
SNIF[9] support part of these functions mentioned above.
However, all of the packet information on the network is
input because they do not specify the logon connection to
be inspected. Therefore, it is impossible to filter related
data and draw out useful information. It cannot offer data
through real-time analysis. It just watches the intruder but
cannot take any active measures.

 There are several network-level monitoring tools with
more functions, and these include IP-watcher[10] on the
UNIX system, hunt[11] on the Linux and T-sight[12] on
Windows NT. These tools use connection hijacking[13] to
monitor and control the user’s activities. Connection

hijacking is an offensive attack for monitoring the
specified user’s activities. It intrudes into the connection
between server and client and makes packets pass through
the connection hijacking server. It is based on the premise
that the system executing connection hijacking is near the
target host. Network monitoring, however, has the
drawback of having a limited data domain. Sniffing on the
broadcast ethernet network is restricted within the traffic
traveling on the subnet being monitored. Therefore, the
network-level monitoring tool is located on the router
nearly outside the network. An encrypted packet among
the collected data through network monitoring cannot be
read. It is overburdened to sniff the entire network for user
identification.

3. Self-Extension Monitoring

This paper presents the Self-Extension Monitoring

approach based on the Shadowing Mechanism for
monitoring hacking activities. The Shadowing Mechanism
is a process for securing enough time for reverse tracing
by protecting a monitoring activity as well as acquiring a
traceable domain, which in turn is obtained by reproducing
itself in the host where the hacker resides. It is possible to
gather data for intruder identification through this process.

The Shadowing Mechanism is a module equipped with
a self-protection facility, which watches the intruder’s tty
and monitors them at the host level. Only when a hacker
invades into a host, does the monitoring at host level
convert to a network level. It is possible to trace the
intruder by extending the monitoring domain. We call it
the Self-Extension Monitoring based on the Shadowing
Mechanism.

The Self-Extension Monitoring approach supports
monitoring at host level or network level as needed with
the Shadowing Mechanism as the basis. It normally
watches the intruder at host level, while shifting of the
intruder starts monitoring at the network level. While the
intruder behaves illegally on another host, some modules
are copied to the target host for host-level monitoring
using the acquired identity information. The collected
information from each target host is then transferred and
analyzed. It is possible to determine the target host of the
attack, which is made via several hosts. Executing host-
level monitoring allows recording of logs for observing
intruders and securing evidence. Once a target host is set,
restriction on the data domain diminishes and encrypted
data need not be read.

Figure 1 shows the Self-Extension Monitoring. It shows
that chasing the intruder’s movement path enlarges the
monitoring domain.

The Shadowing Mechanism logically consists of
monitoring, self-protection and replication.

 3. 1 Monitoring

 While a hacker stays in the host, a Shadowing process

begins by monitoring the intruder’s terminal discreetly. It
observes a user’s login tty to monitor that user’s activity.
The tty is watched via pty, which is dynamically allocated
whenever the user logs into the host. The intruder is
monitored by copying his/her terminal into the
dynamically allocated pty in the Shadowing Mechanism.

 3.2 Self Protection

 Self-protection in the Shadowing Mechanism means

sheltering the monitoring activity from detection of the
intruder. This plays an important role in ensuring time to
observe the intruder. Trojan horse applications use the
execution path mechanism wherein they create the
executable file with the same name as the existing
program and execute the former instead of the latter. A
virus protects itself by changing the execution code.

 The Shadowing Mechanism uses a number of
techniques to evade detection. It attempts both to cover its
tracks and to blend into the normal Linux environment
using camouflage. These techniques have various aspects
of effectiveness.

 The Shadowing Mechanism carries out a number of
functions to cover its trail. It erases its argument list after
processing the arguments, so that the process status
command would not reveal how it is invoked. It also
deletes the executing binary, which would leave the data
intact but unnamed, and only referenced by the execution
of the Shadowing Mechanism. It uses resource limit
functions to prevent a core dump. Thus, it prevents any
bugs in the program from leaving telltale traces behind.
The file /var/adm/utmp(x) shows users who are logging
into a computer system. Since the intruder can recognize
the fact that he/she is under observation, the mechanism
deletes the records. In case of remote login, the user who
is executing a program on a pseudo terminal is recorded in

… … …

…

…

Figure 1 Self-Extension Monitoring

the log file. However, it can record user information or not
when the user executes a shell on the pseudo terminal. The
Shadowing Mechanism does not necessarily need to
protect itself from detection by the normal user or
administrator because shadowing is performed through the
intruder’s process. There are several methods such as
erasing a log, system and network, console or shell history,
which mainly covers the ordinary user’s activities and
traces, but not those of the intruder. They can be added if
necessary.

 In addition to covering tracks, camouflage is used to
hide the shadowing. It is compiled under the name sh, the
same name used by the Bourne Shell, a command
interpreter which is often used in shell scripts and
automatic commands. Even a diligent system manager
would probably not notice a large number of shells
running for short periods of time. It forks, splitting into a
parent and child. The parent would then exit, leaving the
child to continue from the exact same place. This has the
effect of refreshing the process.

 It likewise shields itself by replacing an original
application program with a modified one. It sends the fake
program along with the modules for replication. It can
conceal processes using ps, top or pidof and hide files
using find, ls or du.

 3.3 Replication

 The replication protocol in the Shadowing Mechanism

operates as depicted in figure 2.
 The host, to which the Shadowing Mechanism is

initially applied, is called an intruder identification server.
If the intruder invades an intrusion identification server,
the server starts to monitor an intruder's terminal and
gathers the pertinent authentication information and
hacking activities. When the intruder moves into another
host and begins to get the administrator’s privilege in the
system, the intruder identification server establishes the
connection with the target host and obtains the shell with
the administrator’s authority by using the acquired
authentication information or following the intruder's
commands. After the intruder identification server and
target host authenticate each other, the server sends some
modules to be copied to the target host. The target host
informs the intruder identification server that it receives
every module to be duplicated perfectly by sending a
resynch message. The resynch message is used to
synchronize the server with the target host. If each process
is successful, the intruder identification server manages the
remote shell directly. It then sends the commands for
installing, compiling and running the copied modules to
the target host. The target host executes the commands
from the server by virtue of initializing replication. The
Shadowing Mechanism is set up and starts inspecting the
intruder in the target system. The target system performs
resynch again to notify the intrusion identification server
when replication is completed. After executing resynch,
the intrusion identification server transmits the command
to eliminate the compiled program from the target system.
It then selects the next target system according to the
intruder's movement. Replication in the Shadowing
Mechanism is achieved through the above process.

replicating host target host

socket
established TCP or SMTP connection

shell
established

Send trace program

resynch

Send commands to manage remote shell and run the replicated modules

resynch

Send commands to delete the compiled program

(complie,
link and run)

install

socket
established

Request remote shell via intruder’s process

Figure 2 Replication Protocol

4. Intruder Identification System (IIS)

The Intruder Identification System (IIS) [14] is

developed on the basis of the Self-Extension Monitoring
using the Shadowing and Replication Mechanisms. This
system is implemented in the C language for Linux 2.2.12-
20.

The IIS obtains the user’s authentication or activity
information when the Intrusion Detection System defines
him as an intruder. This system aims at disclosing the
intruder's identity accurately, and is composed of a single
server (Intruder Identification Server) and unspecified
several clients (Intruder Identification Client). It observes
the intruder's activities at the host or network level as
needed. All hosts that the intruder goes through become
the Intruder Identification Clients. The Intruder
Identification Server shadows the user presumed as the
intruder and generates the client for identification on the
host where the intruder goes. It periodically reports the
information gathered about the specified user to the
Intruder Identification Server. This section explains the
working model and the general architecture of the IIS.

 4.1 Working Model

 The functions of the IIS include virtual concealment,

monitoring, replication mode and investigation mode. The

monitoring mode and the replication mode are jointly
referred to as a shadowing mode. When the Intrusion
Detection System identifies the user as an intruder, it
changes into virtual concealment mode [15]. IIS provides
a real system to the regular user, and a faked virtual
system to the intruder. Therefore, it shields the system
from an intruder and confines him or her in a virtual
hacking space for an extended period of time for
observation and monitoring purposes. When the intruder
shifts to another host that is called a target host, basic
authentication information and the movement path of the
intruder are acquired in the monitoring mode. The IIS
starts running the replication and investigation mode using
this information. It then duplicates itself to the target host
to secure another stronghold in the replication mode. In the
investigation mode, it gathers the identity and activity
information of the intruder and inspects security risks such
as a backdoor. Figure 3 presents an overview of an IIS.

 IIS follows the intruder through his/her login tty. If the
intruder does not use the tty on the host with the IIS,
chasing the intruder becomes nearly impossible. For this
reason, it needs to secure another point for identifying the
intruder. Therefore, the Intruder Identification Server
installs the Intruder Identification Client into the target
host when the intruder gets the root privilege by attacking
another host. The administrator can configure which
modules need to be replicated. Normally, the monitoring,
replication and investigation modules are copied to the
target host. The Intruder Identification Server continuously

Intruder
Intrusion Path

replication
investigation

shadowing

tracing

Evidence of Intrusion (trap, log)

virtual concealment

Intruder Identification
Client

Figure 3 Overview of IIS

manages the replicated Intruder Identification Client.

 4.2 Architecture and Implementation

 The IIS consists of components for shadowing and

investigation modes. On the basis of the Environment
Communicator, the upper portion in figure 4 illustrates the
shadowing component while the lower portion presents the
investigation component.

 The Shadowing component is composed of monitoring
and replication mechanisms. The replication and
investigation components deliver an execution
configuration through the Environment Communicator.
The Activity Analyzer and Identification Analyzer
examine a collection of the intruder’s activities as well as
identity information and pass them on to the administrator.
The Remote Monitor watches the intruder’s terminal to
collect the activity information. The Activity Filter
extracts the useful piece among the information transferred
as a result of the monitoring process. The Activity
Analyzer then resolves this information. Information about
the user’s identity is delivered to the Self Replication
Module Manager and is used to replicate the module. If it
is related to activities, it is saved to the database to
generate the hacking scenario database. When the IIS
receives information regarding the intruder’s identity, the
Connection Manager attempts to connect with the target
host. The Remote Protocol Manager commands the file

transmission and executes it in order to reproduce the
investigation module. If the intruder acquires the root
privilege, the Connection Manager can start up a root shell
through the intruder’s new privilege. The Remote Protocol
Manager orders the compilation and execution of the
investigation module using the shell. The Remote Shell
Manager administers the acquired root shell. It then takes
actions so that the intruder cannot notice the investigation.
The Self-Replication Module Manager receives the start-
replication message from the Activity Analyzer and
controls the replicated modules of each host.

 The Execution Environment Adaptor receives
information about the environment from the Self-
Replication Module Manager and establishes the
environment for the investigation of the intruder. The
Attribute Collector, Port Scanner, Pattern Matcher and
Common Collector gather information about the identity.
The information collected is set against the integrity of the
guaranteed data by comparison. The Identification
Analyzer processes the collected information on identity
and sends it to the administrator.

 The IIS supports the web-based user interface. Figure 5
presents the user interface of the IIS. The bottom window
in the figure displays the intruder’s moving path, the hosts’
information on the path and the intruder’s activities in real
time. The intruder’s identification information on each
host is shown in the bottom frame of the top window. It is
possible to retrieve the intruder’s intrusive path, intrusion

Remote
Monitor

Activity
Filter

Connection
Manager

Remote
Machine

Identification
Information

Environment Communicator

G
U
I

Activity
Analyzer

Self
Replication

Module
Manager

Remote
Protocol
Manager

Remote
Shell

Manager

Identification
Analyzer

Comparison
Engine

Database
Manager

Attribute
Collector

Port
Scanner

Pattern
Matcher

Common
Collector

Execution
Environment

Adaptor

Figure 4 System Architecture

methods and the intruder’s own file system. In case of a
security threat, the administrator can respond, take actions
and control the intruder’s process remotely.

5. Conclusions and Future Works

It is impossible to cope with the future era of
information warfare armed with only the existing system/
network monitoring tools. Protection of information
infrastructure and reaction to attack, specifically a
defensive attack, are both required. For this reason, this
paper proposed the Self-Extension Monitoring using
Shadowing Mechanism for Security Management. It
monitors intruders by following their movements and
hiding the monitoring process itself from the intruders. It
enables system security administrators to secure time to
investigate various malicious activities.

Currently, the Intruder Identification System based on
the Shadowing Mechanism using Replication is developed
on Linux 2.2.12-20. A current prototype of the system
identifies intruders according to the general attack scenario
drawn from previous research.

Future work will focus on completion of the first
prototype and research into dealing with unpredicted
attacks.

References

[1] J.R. Winkler., C.J. OShea. and M.C. Stokrp, "Information
Warfare, INFOSEC and Dynamic Information Defense,"
Proceedings of National Information Systems Security
Conference, December 1996

[2] H.T.Jung, et. al.,”Caller Identification System in the
Internet Environment,” Proceedings of USENIX Security
Symposium IV, 1993

[3] S. Garfinkel, G. Spafford, “Practical UNIX and Internet
Security,” 2nd Ed. O’Reilly & Associates Inc., pp.731-
757, 1996

[4] Russel D. and Gangemi G., Computer Security Basics,
O’Reilly & Associates, 1991

[5] E. Nemeth, G. Snyder, S. Seebass and T.R. Hein, ”UNIX
System Administration Handbook,” 2nd Ed. Prentice Hall,
Inc. pp.124, 1995

[6] Abuse of the Linux Kernel for Fun and Profit, vol. 7, issue
15, Phrack 50-05, 1997

[7] tcpdump(8) Version 2.2.1, Van Jacobson, Craig Leres,
Steven Berkeley, University of California, Berkeley, CA.

[8] Netlog. Mark Gates, Alex Warshavsky and Von Welch,
National Laboratory for Applied Network Research.
http://dast.nlanr.net/Projects/Netlog/

[9] Alves-Ross J., "An Overview of SNIF: A Tool for
Surveying Network Information Flow," Proceedings of the
Internet Society Symposium on Network and Distributed
System Security, February, 1995

Figure 5 User Interface

[10] N. Michael, “Monitoring and Controlling Suspicious
Activity in Real-time with IP-Watcher,” Proceedings of
the Annual Computer Security Applications Conference,
December 1995.

[11] Hunt. http://www.cri.cz/kra/index.html#HUNT
[12] T-sight. En Garde Systems, Inc.

 http://www.engarde.com/.
[13] Hyunchul Jung, “TCP connection hijacking attack and

countermeasure,” CERTCC-KR-TR-99-002, Korea
Information Security Agency, 1999

[14] Final research report : The Design and Implementation
of Intruder Identification System, Korea Information
Security Agency, December, 1999

[15] Sangwook Kim, Heejin Jang, Boseok Park, Gunwoo
Kim, Junghyun Park and Chaeho Lim, "A Virtual System
for Monitoring intruders," Proceedings of the 4th Annual
Joint Workshop on Modern Electronic Technologies and
Applications, pp.197-202, Beijing, November, 1999

