Preventing execution of JIT
shellcode
by isolating running process

Ken Ichikawa, Kanta Matsuura
University of Tokyo
Works in Progress

ACSAC 27

JIT Compilation causes JIT Spraying

N - Heap memory

zmu_“ﬂ_d | —— JIT Compiled

" | Open malicious website Code
1. Malicious Website JIT Compiled

Access / Code
JIT Compiler NV Genmiiiee

Vulnerability Code

4. 3. | Spray many JIT compiled

Vulnerability pray ches P JIT Compiled

Attack N Code

> Jump onto Heap and
run JIT shellcode

Bypass DEP(Data Execution Prevention) and ASLR(Address Space Layout Randomization) ,

JIT shellcode generation mechanism

* JIT compiler generates only safe codes
seemingly but they can become shellcodes

Address: native code

assembly

03470069: B8 9090903C
0347006E: 35 9090903C
03470073: 359090903C
03470078: 35 9090903C
0347007D: 35 9090903C
03470082: 35 9090903C

MOV EAX,3C909090
XOR EAX,3C909090
XOR EAX,3C909090
XOR EAX,3C909090
XOR EAX,3C909090
XOR EAX,3C909090

1byte offset

—

Address: native code assembly

0347006A: 90
03470068B: 90
0347006C: 90
0347006D: 3c 35
0347006F: 90
03470070: 90

NOP
NOP
NOP
CMP AL,35
NOP
NOP

One of the Countermeasures
e JIT Defender[Ping Chen et al. 2011]

— Adds executable attributes at only execution time
— Very simple idea and very easy to implement
— Has a problem

* |t's probable to be attacked at execution time

danger
normal (insecure)
JIT engine compilation | execution other
safe danger safe
JIT Defender compilation | execution other

time
Reference: P. Chen, Y. Fang, B. Mao, and L. Xie, “JITDefender: A defense against jit spraying attacks,” in

Future Challenges in Security and Privacy for Academia and Industry, vol. 354 of IFIP Advances in
Information and Communication Technology, pp. 142-153, Springer Boston, 2011.

Our Proposal

* Process Isolation

— Generates a child process just before execution of
generated codes.

— Parent process don’t need to add executable
attributes to the data area of the memory.

safe

Child Process execution

Parent Process compilation wait other

time

Check for work of our proposal

. .
Attack success or failure The checking method

1. Created JavaScript code that

normal v8 Success can become JIT shellcode
(after execution) after JIT compilation.

Normal v8 Success 2. Modified a program using V8
(while execution) to jump onto JIT shellcode
process isolated v8 Failure location as a vulnerable
(after execution) program.

process isolated v8 Failure
(while execution)

All conditions are turned ASLR off to be the program more vulnerable.

Performance Evaluation

Don’t trust this data. Our implementation has not completed yet.
However, process isolation itself can work.

* V8 benchmarks total score average

Normal V8 Process isolated V8

7067.8 7068.2

approximately-same

* V8 benchmarks and V8 its own running time average

Normal V8 Process isolated V8

9.6002s 9.6310s

Only 0.3% overhead

Conclusion

Our proposal, process isolation, can prevent JIT
Spraying Attacks at any time.

It seems that our proposal’s running time
overhead is marginal, so it’s practical.

Future Work

Make certain our implementation.

Consider the situation that multi threads of a
parent call execution of generated codes.

Thank you for your attention!

If you would like to contact us, please send E-mail to
ichik@iis.u-tokyo.ac.jp

