

MAKING COMPUTING SECURETM

A Green Hills Software company

Lessons Learned from the First High Assurance (EAL 6+) Common Criteria Software Certification

David Kleidermacher, CTO davek@integrityglobalsecurity.com



Agenda

- Background of EAL 6+ Software and Certification
- Lessons Learned

INTEGRITY: 1st Software Certified to EAL6+ High Robustness

Common Criteria Evaluation and Validation Scheme and the conclusions of the testing laboratory in the evaluation technical report are consistent with the evidence adduced. This certificate is not an endorsement of the IT product by any agency of the U.S. Government and no warranty of the IT product is either expressed or implied.

Product Name: INTEGRITY-178B Separation Kernel Evaluation Platform: INTEGRITY-178B Real Time Operating System (RTOS), version IN-ICR750-0101-GH01_Rel running on Compact PCI card, version CPN 944-2021-021 w/PowerPC, version 750CXe Assurance Level: EAL6+, High Robustness

Original Signed By

Director, Common Criteria Evaluation and Validation Scheme National Information Assurance Partnership

CCTL: Science Applications International Corporation Validation Report Number: CCEVS-VR-VID10119-2008 Date Issued: 01 September 2008 **Protection Profile: US Government Protection Profile for** Separation Kernels in Environments Requiring High Robustness, Version 1.03, 29 June 2007

Original Signed By

Information Assurance Director National Security Agency

Operating System Protection Profiles

NAME	TITLE	Security Level	Threat Environment		
SKPP	Separation Kernel in High Robustness Environments	EAL 6+ / High Robustness	"management of classified and other high-valued information, whose confidentiality, integrity or releasability must be protected" "presence of both sophisticated threat agents and high value resources"		
САРР	Controlled Access Protection Profile	EAL 4+	"non-hostile and well-managed user community" "inadvertent or casual attempts to breach the system security" "not intended to be applicable to circumstances in which protection is required against determined attempts by hostile and well-funded attackers"		
CCOPP-OS	COTS Compartmentalized Operations Protection Profile – Operating Systems	EAL 4	"not expected to adequately protect against sophisticated attacks" "users are highly trusted not to attempt to maliciously subvert the system or to maliciously exploit the information stored thereon"		
LSPP	Labeled Security Protection Profile	EAL 4+	"non-hostile and well-managed user community" "inadvertent or casual attempts to breach the system security" "not intended to be applicable to circumstances in which protection is required against determined attempts by hostile and well-funded attackers"		
SLOS	Single Level Operating Systems in Medium Robustness Environments	EAL 4+	"suitable for use in unclassified environments" Not appropriate for "organization's most sensitive/proprietary information" we exposed to "a publicly accessible network" "likelihood of an attempted compromise is medium" "motivation of the threat agents will be average"		
MLOS	Multilevel Operating Systems in Medium Robustness Environments	EAL 4+	"suitable for use in unclassified environments" Not appropriate for "organization's most sensitive/proprietary information" when exposed to "a publicly accessible network" "likelihood of an attempted compromise is medium" "motivation of the threat agents will be average"		

- Lesson #1: Don't underestimate pain of validating the PP
 - SKPP first authored in 2002
 - Certified in 2007
 - New NIAP policy: no custom STs
 - Review by committee (Open Group)

INTEGRITY Historical Overview

- 1997 First INTEGRITY shipment
 - B1-B Bomber
- 2000 INTEGRITY selected for F-35 Joint Strike Fighter
 - Since: F-16, F-22, S-92, A380, A400, 787, others
- 2002 First FAA DO-178B level A certification
- 2005 Entered EAL6+ High Robustness Evaluation
- 2006 First delivery of INTEGRITY PC
- 2008 EAL6+ High Robustness certification
- 2008 INTEGRITY Global Security, LLC launched
- 2009 #1 High Reliability RTOS by rev. market share

(Image courtesy of U.S. Air Force/Jet Fabara)

(Image courtesy of US Air Force/Tom Reynolds)

Why EAL 6+ / High Robustness?

- EAL 6+ High Robustness evaluation
 - U.S. Government program to protect sensitive national secrets
 - "high robustness": the most valuable information exposed to the most determined and resourceful attackers
 - "management of classified and other high-valued information, whose confidentiality, integrity or releasability must be protected."
 - "appropriate to support critical security policies for the Department of Defense (DoD), Intelligence Community, the Department of Homeland Security, Federal Aviation Administration, and industrial sectors such as finance and manufacturing."
 - INTEGRITY compliant to CC v3.1 EAL 7

High Robustness

ATTACK THREAT

		Low Threat	Medium Threat	High Threat
	High Value	Basic	Medium	HIGH
Asset Value	Medium Value	Basic	Medium	Medium
	Low Value	Basic	Basic	Basic

Commercial OS/VMM Certs

Product/ Technology	Түре	PROTECTION PROFILE	Security Level	
INTEGRITY	Operating System	SKPP	EAL 6+/ High Robustness	
Windows XP	Operating System	CAPP	EAL 4+	
Windows Vista	Operating System	CAPP,SLOS (in eval)	EAL 4+	
Linux	Operating System	CAPP, LSPP	EAL 4+	
SELinux	Operating System	CAPP, LSPP	EAL 4+	
Solaris (and Trusted Solaris)	Operating System	CAPP, LSPP	EAL 4+	
HP/UX	Operating System	CCOPP-OS (in eval)	EAL 4+	
VMware	Virtualization	Custom	EAL 4+	
STOP OS	Operating System	CAPP, LSPP	EAL 5	
PR/SM LPAR Hypervisor	Virtualization	Custom	EAL 5	

Requirements: CM and Testing

REQUIREMENT	DESCRIPTION	SKPP	CAPP	Notes
	Configuration			
	management			SKPP requires complete
ACM_AUT	automation	2	0	automation
	Analysis of test			Complete coverage of
ATE_COV	coverage	3	2	functional requirements
				SKPP CM requires
	Configuration			coverage of development
ACM_SCP	management scope	3	1	tools

- "Bit provenance"
- 100% FFFI
- Green Hills compiler and tool chain

MAKING COMPUTING

- Lesson #2: Reuse other cert results / artifacts
 - DO-178B Level A shaved years off of evaluation time and cost
 - Many common assurance artifacts design, testing, CM, etc.

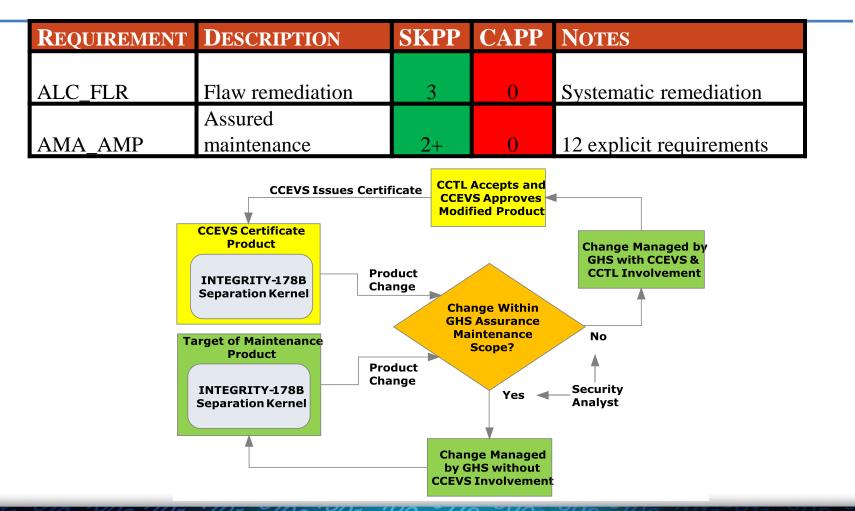
Requirements: Design and Specification

REQUIREMENT	DESCRIPTION	SKPP	CAPP	NOTES	
	Functional			SKPP requires formal	
ADV_FSP	Specification	4	1	specification	
				SKPP requires rigorously	
				defined transformation	
	Implementation			from representation to	
ADV_IMP	representation	3	0	implementation	
(defun RemoveFromList (TheList Element st)) voidRemoveFromList (LIST *TheList, ELE * Element)		
(% (NextInList = (Element -> next)) (ifx (NULLP NextInList)		{	{ ELE *PrevInList, *NextInList = Element -> next; if (!NextInList)		
		1			
st)			return;		
(11	(equal Element NextInList)				

(% ((TheList -> First) @=(NULL)))

(%

if (Element == NextInList)
TheList -> First = NULL;
else if (TheList -> First == Element)
TheList->First == NextInList;


```
PrevInList = Element->prev;
PrevInList->next = NextInList;
NextInList->prev=PrevInList;
Element->next = NULL;
Element->prev=NULL;
```


- Lesson #3: Formal methods are expensive
 - Limited worldwide expertise
 - Must be designed in from the beginning
 - Proof system/approach must be acceptable to evaluators
 - Prove correspondence of formal model to implementation
 - Working on ways to make this more efficient

Requirements: Flaw remediation and Assured maintenance process

MAKING COMPUTING SECURE

- Lesson #4: EAL 6+ certifications can be reused
 - Assured Maintenance (AMA)
 - From SKPP 6.6.1.1: Explicit: Assurance Maintenance Plan (AMA_AMP_EXP.1)
 - <u>http://www.niap-ccevs.org/st/st_vid10119-add1.pdf</u>

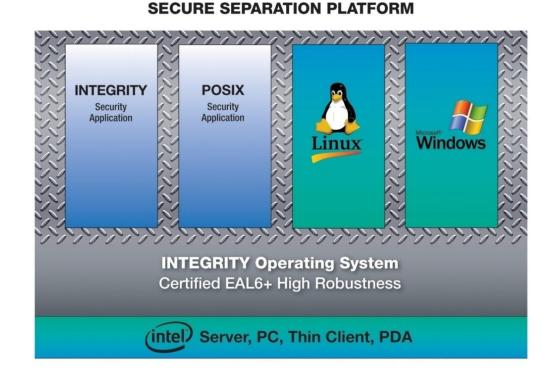
Requirements: Vulnerability Assessment

REQUIREMENT	DESCRIPTION	SKPP	CAPP	Notes
AVA CCA	Covert channel analysis	2+	0	Inter-partition analysis
		$\angle op$	0	
	Analysis and testing			
AVA_MSU	of insecure states	3	1	All potential insecure states
	Vulnerability			
AVA_VLA	assessment	4	1	NSA pen testing

• Emulate sophisticated attack threat

NG COMPUT

- Lesson #5: high assurance pen testing is a black box
 - Don't expect to meet a schedule



- Lesson #6: Common Criteria has an unfair bad rap
 - 99% of evaluations performed at EAL 4+ or below
 - Huge negative ROI
 - EAL 5 is the start of meaningful
 - EAL 6+ is high assurance
 - Need more high assurance products
 - Common Criteria is a generally sound approach

INTEGRITY PC - High Assurance Platform

- Thin clients, laptops, desktops, servers
- **Benefits**
- Highest security where you need it
- Maintain current investment in Guest OS
- Open migration path make system increasingly secure and reliable

Summary

• EAL 6+ High Robustness – the Gold Standard

Enormous ramifications and applications for application software security

Lessons Learned

 Lesson #7: It is possible (and practical) to achieve high assurance for important software projects

