
A Module System for Isolating Untrusted Software Extensions

Philip W. L. Fong and Simon A. Orr
Department of Computer Science, University of Regina, Regina, Saskatchewan, Canada

{pwlfong,orrsim11}@cs.uregina.ca

Abstract

With the recent advent of dynamically extensible soft-
ware systems, in which software extensions may be dynam-
ically loaded into the address space of a core application
to augment its capabilities, there is a growing interest in
protection mechanisms that can isolate untrusted software
components from a host application. Existing language-
based environments such as the JVM and the CLI achieves
software isolation by an interposition mechanism known as
stack inspection. Expressive as it is, stack inspection is
known to lack declarative characterization and is brittle in
the face of evolving software configurations.

A run-time module system, ISOMOD, is proposed for the
Java platform to facilitate software isolation. A core ap-
plication may create namespaces dynamically and impose
arbitrary name visibility policies to control whether a name
is visible, to whom it is visible, and in what way it can be ac-
cessed. Because ISOMOD exercises name visibility control
at load time, loaded code runs at full speed. Furthermore,
because ISOMOD access control policies are maintained
separately, they evolve independently from core application
code. In addition, the ISOMOD policy language provides
a declarative means for expressing a very general form of
visibility constraints. Not only can the ISOMOD policy lan-
guage simulate a sizable subset of permissions in the Java 2
security architecture, it does so with policies that are robust
to changes in software configurations. The ISOMOD policy
language is also expressive enough to completely encode a
capability type system known as Discretionary Capability
Confinement. In spite of its expressiveness, the ISOMOD

policy language admits an efficient implementation strat-
egy. In short, ISOMOD avoids the technical difficulties of
interposition by trading off an acceptable level of expres-
siveness. Name visibility control in the style of ISOMOD is
therefore a lightweight alternative to interposition.

1. Introduction

Secure cooperation is the problem of protecting mutu-

ally suspicious code units from one another while they are
executing in the same run-time environment [22, 27]. It
finds applications in dynamically extensible software sys-
tems such as mobile code platforms, scriptable applica-
tions, and software systems with plug-in architectures. The
language-based approach to security [26] is an established
paradigm for addressing the challenge of secure coopera-
tion. Specifically, untrusted code units are encoded in a
safe language, and subsequently executed in a secure run-
time environment, the protection mechanisms of which are
implemented by programming language technologies such
as type systems, program rewriting, and execution monitor-
ing. This paper proposes a language-based access control
mechanism that is based solely on name visibility control.

Existing language-based approaches to access control
are mostly based on the classical notion of interposition
[30, 29, 32, 1]. A direct implementation of this idea is to
interpose monitoring code at the entry points of system ser-
vices. At run time, authorization decisions are made by
examining invocation arguments or execution history. For
example, stack inspection [30] as found in the Java Virtual
Machine (JVM) [19] and the Common Language Infrastruc-
ture (CLI) [9] is implemented in this way. Direct interposi-
tion, however, is difficult to maintain. Security checks are
scattered over the entire host system. Fixing a vulnerability
requires the availability of host system source code. Worst
still, as security checks are hard-coded into the host system,
evolution in security requirements or software configuration
is not easily addressed without reprogramming the host sys-
tem itself.

A second language-based approach to implement inter-
position is by load-time binary rewriting [10, 29, 30, 32]
Specifically, monitoring code is weaved into untrusted code
at load time. Although this so called inlined reference mon-
itor (IRM) approach [29] is equal in expressive power to
direct interposition [14], the former has clear software en-
gineering advantages over the latter. In particular, the late
binding of security checks allows security code to evolve
separately from the rest of the system, thereby address-
ing the software engineering concerns raised in the pre-
vious paragraph. Unfortunately, independent reports have

confirmed that the injected code incurs significant run-time
overhead [29, 30].

Is interposition (direct or IRM-based) always necessary
for access control in the context of dynamically extensible
systems? Interposition is motivated by the need for exe-
cution monitoring [25], in which the dynamic state and the
execution history of a system are examined when authoriza-
tion decisions are made. In many cases, one simply wants
to completely turn off a system service. (This is evident
by the large number of target-less BasicPermissions de-
fined in the Java 2 security architecture.) In other cases,
the safety property [25] to be enforced is memory-less, and
the avoidance of the confused deputy problem [15] is not a
significant concern. In such contexts, execution monitoring
can be replaced by a lighter-weight enforcement mechanism
that does not exhibit the engineering dilemma presented by
interposition.

In this paper, we explore a seldom studied point in the
design space of language-based access control — name vis-
ibility control. The intuition is that, if the name of the en-
try point for a system service is not visible to an untrusted
code unit, then the service is essentially inaccessible to the
code unit. Therefore, access control can be achieved by
specifying what names are visible, to whom they are visi-
ble, and to what extent they are visible. The goal of this
research is to investigate the degree to which name visibil-
ity control can serve the purpose of access control when
full-fledged execution monitoring is not necessary. To this
end, we present the design of a practical security archi-
tecture for dynamically extensible Java applications that is
built around a module system called ISOMOD (Sect. 2). In
programming language literature, a module system is a facil-
ity responsible for managing the visibility of names across
namespaces [16]. Because ISOMOD exercises name visibil-
ity control only at load time, and does not inject any mon-
itoring code into classfiles, loaded code runs at full speed.
Furthermore, because ISOMOD access control policies are
maintained separately, they evolve independently from core
application code. An interesting finding of this study is that
a rich family of access control policies can be expressed as
name visibility constraints. The ISOMOD policy language
provides a declarative means for expressing a very general
form of visibility constraints (Sect. 3). Not only can the
ISOMOD policy language simulate a sizable subset of per-
missions in the Java 2 security architecture (Sect. 4.1), it can
do so with policies that are robust to changes in software
configurations (Sect. 4.2). The ISOMOD policy language
is also expressive enough to completely encode a capabil-
ity type system known as Discretionary Capability Confine-
ment [12] (Sect. 4). In spite of its expressiveness, the ISO-
MOD policy language admits an efficient implementation
strategy (Sect. 5). In short, ISOMOD avoids the technical
difficulties of interposition by trading off an acceptable level

IsoMod

Extensions
Trusted

App Core

Child
Namespace

Namespace
Parent

Import

Untrusted

Figure 1. Hierarchical namespaces & ISOMOD

of expressiveness. Therefore, name visibility control in the
style of ISOMOD is a lightweight alternative to interposition
for language-based access control.

2. The ISOMOD Security Architecture

ISOMOD employs name visibility control as the sole
mechanism for access control. We describe the Java class
loading mechanism from the perspective of name visibil-
ity control. In programming language terminology, a Java
class loader is the mirror [5] of a run-time namespace. Hier-
archical organization of namespaces is enabled by the del-
egation model of class loading [18], in which the names
visible in a parent namespace are imported implicitly into
a child namespace (Fig. 1). Consequently, the set of names
visible in a namespace is the union of (1) the set of names
visible in its delegation parent and (2) the set of names that
are defined locally. A class may refer to external entities
such as other classes and their fields and methods. These
external references are resolved in the same namespace in
which the referring class is defined. In short, static scoping
is enforced.

In a dynamically extensible software system, the trusted
application core is defined in a parent namespace, while
child namespaces are created for defining untrusted soft-
ware extensions (Fig. 1). Core application services are
exposed to the extension code through implicit name im-
port from the core application namespace to the extension
namespace. ISOMOD is a run-time module system de-
signed for isolating untrusted software extensions. It does
so by controlling the visibility of names in the extension
namespaces. Specifically, an ISOMOD namespace enforces
2 kinds of control: (1) restricting the visibility of names that
are imported from the parent namespace, and (2) restrict-
ing the visibility of locally defined names. When a name is
placed under visibility control, an ISOMOD namespace may
(a) control which locally defined class can “see” the name,
and (b) present an alternative, restricted view of the entity to
which the name is bound. Every ISOMOD namespace is en-
dowed with a custom name visibility policy, which specifies

Access Right Description
Declared type target C / Declared type subject D

extend D extends C

implement D implements C

Declared type target C / Method subject N

catch N handles exception type C

cast N casts a reference to C

instanceof N checks if a reference is C

new N creates an instance of C

reflect N gets the Class object of C

new-array N creates an array of C

Similarly, cast-array, instanceof-array, reflect-array.
Field target F / Method subject N

get N reads F

put N writes F

Method target M / Method subject N

invoke N invokes M

override N overrides M

Figure 2. Access rights

visibility restrictions to be imposed on the names visible in
the namespace. When appropriately constructed, an ISO-
MOD policy may be used to selectively hide core applica-
tion services from untrusted extensions (Sect. 4.1 and 4.2),
or impose collaboration protocols among classes defined in
the extension namespace (Sect. 4.3). A major contribution
of this work is the design of a policy language that can ex-
press a rich family of access control policies as fine-grained
visibility constraints.

An ISOMOD namespace is an instance of a user-defined
class loader type. An ISOMOD class loader performs extra
checks on a classfile before converting it into a Class ob-
ject. Specifically, class definition is only authorized when
no external accesses in the classfile are denied by the pol-
icy. This late enforcement of visibility control distinguishes
ISOMOD from traditional module systems, in which visi-
bility control is enforced only at compile time. It is this
feature that turns the ISOMOD module system into a viable
protection mechanism.

An ISOMOD namespace may be constructed at run time
by an application core from an ISOMOD policy. This late
binding of access control policy to code not only supports
the separate maintenance of code and policy, but also sup-
ports the presentation of different views of the same appli-
cation core to different extensions.

3. The ISOMOD Policy Language

The ISOMOD policy language provides a declarative and
expressive means to specify the access control policy of an
ISOMOD namespace. An access is composed of three ele-
ments: (1) a subject, (2) an object, and (3) an access right.

Unary Predicates on Declared Types
final abstract interface

public package-private
Binary Predicates on Declared Types

subclass superinterface assignable
extends implements

Figure 3. Sample predicates

An object is also called a target to avoid confusion in the
context of object oriented programming. ISOMOD controls
access to three kinds of targets: (a) declared types, (b) fields,
and (c) methods. A declared type is either a class or an in-
terface. For brevity, the word “class” is used as a synonym
of “declared type”. Every target is identified by a name visi-
ble in the ISOMOD namespace. A target can be accessed by
exercising a fixed set of access rights as outlined in Fig. 2.
A subject is either (a) a declared type whose name is de-
fined in the ISOMOD namespace, or (b) a method declared
in such a class.

An ISOMOD policy is made up of a finite number of pol-
icy clauses (or access control rules), each of which has the
following general syntax:

O (allows|denies) {r1, . . . , rk} [to S] [(when|unless) c]

In general, a policy clause describes if a target O grants
(denies) access rights r1, . . . , rk to a subject S. When the
optional to-phrase is omitted, the rights are granted (denied)
categorically. An optional condition c may also be supplied
to specify when the policy clause is applicable (not appli-
cable). The condition c is a first-order predicate in O and
S. The ISOMOD policy language predefines a number of
built-in connectives, predicates and functions for express-
ing complex applicability conditions. ISOMOD also pro-
vides a simple mechanism for policy programmers to define
application-specific predicates and functions. Fig. 3 shows
a sample of built-in predicates.

Prior to the definition of a declared type [19, Sect. 5.3],
its classfile is examined by the ISOMOD class loader for
conformance to the corresponding ISOMOD policy. To this
end, the set of all accesses in which the classfile (or one of
its declared methods) is a subject is first collected. Each
access is then checked according to the authorization algo-
rithm outlined in Fig. 4: the policy clauses are examined in
the order they appear in the policy, and the authorization de-
cision of the first applicable policy clause is then adopted.
(A default authorization decision can be specified by the
user of ISOMOD to handle the case when no policy clause
applies.) If any access is denied by the policy, the definition
of the declared type will not be authorized.

Simple as it is, the ISOMOD policy language is capable
of expressing a rich family of access control policies, a topic
to which we will now turn.

To decide if access 〈S, O, r〉 is granted by policy P :
for each rule R in policy P do

if R is relevant to 〈S, O, r〉 then
if c is true then

if R is a when-rule then
if R is an allow-rule then

return grant;
else // R is a deny-rule

return deny;
else // c is false

if R is an unless-rule then
if R is a allow-rule then

return grant;
else // R is a deny-rule

return deny;
return user-specified default;

Figure 4. Authorization semantics

4. Sample Applications

4.1. Selective Hiding of System Services

ISOMOD can be used to enforce many of the Basic-

Permissions defined in the Java 2 platform. For exam-
ple, the getClassLoader permission controls whether un-
trusted code may acquire a ClassLoader reference from
the platform library. The effects of denying this permission
can be simulated by the ISOMOD policy below:

policy getClassLoader
default allow

method ClassLoader.getParent

denies { invoke }
method ClassLoader.getSystemClassLoader

denies { invoke }
method Class.getClassLoader

denies { invoke }
method Class Class.forName(String,boolean,

ClassLoader)

denies { invoke }
The policy begins with a header that identifies the policy
name and asserts that the default authorization decision is
to allow access (i.e., when no policy clause applies). Next
come the policy clauses, which disallow invocation of all
methods declared in the Java platform library that return
a ClassLoader. Notice that one may either specify a
method target solely by its name (e.g., getClassLoader),
or by both its name and its type signature (e.g., forName1).

1The forName method is denied because untrusted code may pass in a
null ClassLoader reference to access the bootstrap ClassLoader.

The related createClassLoader permission controls
whether untrusted code may create new instances of the
ClassLoader class. In the Java 2 platform, security
checks are embedded in the constructors of ClassLoader,
SecureClassLoader and URLClassLoader for ensuring
that the caller possesses the said permission. Denying the
createClassLoader permission can be simulated with
the following policy clause:

method C.M
denies { invoke }

when constructor(M) and
subclass(C, ClassLoader)

Notice that this policy clause is more general than the ones
aforementioned: it is applicable to any constructor M of
a class C that is either ClassLoader or one of its sub-
classes (i.e., the predicate constructor tests if a method is a
constructor, and the binary relation subclass is the reflexive
transitive closure of the extends relation). Specifically, con-
structor invocation is denied. This rules out all means for
creating ClassLoader instances.

The following is an alternative policy clause that
achieves the same effects.

class C
denies { new }

when subclass(C, ClassLoader)

Rather than controlling the invocation of ClassLoader

constructors, this policy clause directly disallows the cre-
ation of new ClassLoader instances.

Most BasicPermissions defined in the Java 2 platform
can be expressed declaratively by ISOMOD. There is, how-
ever, a clear software engineering advantage to the ISOMOD

approach. Consider what is required in implementing and
maintaining a Java 2 BasicPermission. One has to in-
spect the entire Java 2 platform library to identify all points
of attack, and then interpose monitoring code at each point.
When a vulnerability is found, library source code has to
be modified. In the ISOMOD example above, an exhaus-
tive audit of the platform library is still necessary, yet the
maintenance path is far superior: the policy is expressed
declaratively and maintained independently.

The ISOMOD approach provides a way to enforce
fine-grained access control policies not expressible by
the Java 2 permission system. Suppose we are to prevent
untrusted code from using the Reflection API to invoke
methods, access fields and arrays, and create new object
instances, but we want to permit the examination of class
interfaces. The existing permissions defined in Java 2 are
not sufficient for expressing this highly selective policy.
However, there is no problem constructing ISOMOD

policy clauses to selectively hide the following reflection
services: (1) method invocation: Method.invoke; (2)

field access: the Field.get/set family of methods;
(3) array access: the Array.get/set family of meth-
ods; (4) object instantiation: Class.newInstance,
Constructor.newInstance, Array.newInstance,
Proxy.newProxyInstance; (5) subtyping: Proxy.get-
ProxyClass.

4.2. Systematic Control of Reference Ac-
quisition

In the createClassLoader example, we could have
formulated the following rule to deny the instantiation of
new URLClassLoader instances:

method URLClassLoader.newInstance

denies { invoke }
We did not impose this policy clause because such a re-
striction is not part of the semantics of the createClass-
Loader permission. Yet, this observation reveals a gen-
eral challenge in policy formulation. Suppose we want to
eliminate all means by which untrusted code may acquire a
ClassLoader instance (that is, either by retrieving an ex-
isting instance or by creating a new one). An exhaustive au-
dit of the platform library must be conducted to ensure all
means of leaking ClassLoader references are accounted
for. Not only is this an error-prone approach, it does not ac-
count for many useful configuration management practices:
What if non-standard platform extension libraries are in-
stalled? What if ISOMOD is used for isolating dynamically
downloaded plug-ins of an extensible application? Platform
extensions and application classes may expose additional
means of leaking ClassLoader references. To ensure that
the access control policy is bullet proof, even a minor per-
turbation of the software configuration will necessitate a re-
audit of the software infrastructure. Such a practice is sim-
ply unacceptable.

A major contribution of ISOMOD is that it offers an ex-
pressive and declarative policy language that addresses the
aforementioned configuration management challenge in ac-
cess control. We demonstrate this feature by producing an
ISOMOD policy that systematically restricts the acquisition
of ClassLoader references. To this end, we begin by ex-
haustively enumerating all means by which a reference of
type A may acquire a reference of type C:

1. A declared type A generates a reference of type C
when one of the following occurs: (a) A creates an
instance of C; (b) A casts a reference to type C; (c)
An exception handler in A with catch type C catches
an exception.

2. A declared type B shares a reference of type C with
declared type A when one of the following occurs: (a)
A invokes a method declared in B with return type C;

(b) A reads a field declared in B with field type C;
(c) B writes a reference into a field declared in A with
field type C.

3. A declared type B grants a reference of type C to de-
clared type A when B invokes a method declared in A,
passing an argument via a formal parameter (including
the pseudo-parameter this) of type C.

Based on the analysis above2, we formulate the following
policy clauses to prevent untrusted code from acquiring a
ClassLoader reference:

policy acquireClassLoader
default allow

class C
denies { new, cast, catch }

when subclass(C, ClassLoader)
field C.F

denies { get, put }
when subclass(field-type(F), ClassLoader)

method C.M
denies { invoke }

when subclass(return-type(M), ClassLoader)
method C.M

denies { invoke }
when exists A in parameter-types(M) :

subclass(A, ClassLoader)

The first policy clause eliminates all means of generating
ClassLoader references. The second and third policy
clauses eliminate all means of sharing ClassLoader refer-
ences. The last policy clause eliminates all means of grant-
ing ClassLoader references. Built-in functions such as
field-type, return-type and parameter-types are employed to
specify fine-grained accessibility criteria. The use of exis-
tential quantification (exists) is also demonstrated.

The policy above systematically restricts the acquisition
of ClassLoader instances. Neither policy reformulation
nor source code auditing is necessary even if the configura-
tion of the underlying system has evolved.

4.3. Discretionary Capability Confinement

We demonstrate how ISOMOD can be used for enforc-
ing a general-purpose capability type system, Discretionary
Capability Confinement (DCC) [12]. A lightweight, stat-
ically enforceable type system, DCC supports the use of
abstractly-typed object references as capabilities in a Java-
like object-oriented programming language. A capability
[8] is an object reference qualified by a set of access rights,
the latter specifying in what ways the underlying object can

2For brevity, the analysis does not account for array types. Such an
extension is straightforward.

(DCC1) Unless B�A, A shall not invoke a static method declared
in B.

(DCC2) (i) A can generate a reference of type C only if C�A; (ii)
B may share a reference of type C with A only if C�A∨A ��
B.

(DCC3) If A.m invokes B.n, and C is the type of a formal pa-
rameter of n, then C � B ∨ A �� B ∨ (B � m ∧ C � m).

(DCC4) A method m may invoke another method n only if n�m.

(DCC5) If A is a subtype of B, then B � A.

(DCC6) Suppose B.n is overridden by B′.n′. Then (i) n′�n; (ii)
if the method return type is C, then C � B ∨ B � B′; (iii) if
C is the type of a formal parameter, then C � B′ ∨ B �� B′.

(DCC7) If A is a subtype of B, then B :� A.

(HMS1) � :� D.

(HMS2) If D :� E , then D � E .

(HMS3) If D :� E ∧ D′ � E , then D � D′ ∨ D′ � D.

Figure 5. DCC Type Constraints

be accessed through the reference. Capabilities can be mod-
eled in a language-based environment through a capability
type system, in which every object reference is statically as-
signed a capability type that restricts access to the underly-
ing object. In a sense, a capability type presents a restricted
view of the object it types. In a Java-like object-oriented
programming language, an object reference with a static in-
terface type (or abstract class type) could be seen as a capa-
bility, because the typed reference only exposes a restricted
view of the underlying object. This approach of modeling
capabilities suffers from two problems: capability leakage
and capability theft [28]. DCC is a minimal perturbation
to Java for controlling capability propagation. In the fol-
lowing, we illustrate the expressiveness of ISOMOD by em-
ploying its policy language to encode the DCC type system.
The focus here is ISOMOD and not DCC. Interested readers
may consult [12] for more details of DCC.

In DCC, the space of declared types (e.g., class & in-
terface) is partitioned into a finite number of confinement
domains, so that every declared type belongs to exactly one
confinement domain. We write l(C) = D when declared
type C belongs to confinement domain D. The confine-
ment domains are partially ordered by a dominance rela-
tion �. We say that domain D dominates domain E when
E � D. Together, domain membership and dominance in-
duce a natural pre-ordering of declared types: if l(B) = E ,
l(A) = D, and E � D, then we write B � A, and say that B
trusts A. The intuition behind these definitions is that, if C
trusts A, then A may freely acquire a reference of static type
C. Otherwise, C is said to be a capability for A. Capabil-

ity acquisition is carefully restricted in DCC. We also write
A �� B when A � B and B � A hold simultaneously. We
postulate that there is a root domain � which is dominated
by every domain.

To control capability granting, associated with every
method m is a domain l(m), called the capability grant-
ing policy of m. Intuitively, the capability granting policy
l(m) dictates what capabilities may be granted by m, and to
which declared types m may grant a capability. (We write
m � n, m � A and A � m for the obvious meaning.)

A second partial ordering :� on domains is postulated.
We say that D strongly dominates E when E :� D. As we
shall see, strong dominance controls whether subtyping is
allowed across domain boundaries. This helps to establish
mutually exclusive roles.

Fig. 5 enumerates the type constraints of DCC as spec-
ified in [12]. We have successfully encoded all the DCC
type constraints by an ISOMOD policy, which is displayed
in Appendix A. Behind the policy of Appendix A is a num-
ber of assumptions. As in [12], we assume that domain
membership and capability granting policies are embedded
in Java classfiles via the JDK 1.5 metadata facility. Domains
are represented by specially annotated interfaces, and the
dominance and strongly dominance relations are encoded
respectively by the subinterfacing relation and JDK 1.5 an-
notations. Domain-specific functions and predicates have
been defined to examine these annotations. In the following
we will highlight some aspects of this encoding that illus-
trate further features of ISOMOD.

Consider the following type constraint from Fig. 5:

(DCC2) (i) A can generate a reference of type C only if
C � A; (ii) B may share a reference of type C with A
only if C � A ∨ A �� B.

In this constraint, the first clause denies the generation of
capabilities, and the second clause denies the sharing of ca-
pabilities with reference types belonging to a different con-
finement domain. This constraint can be encoded as the
following ISOMOD policy clauses:

class C
denies { catch, cast, new } to method A.M

unless trusts(C,A)
method B.N

denies { invoke } to method A.M
unless trusts(return-type(N), A) or

(trusts(A,B) and trusts(B,A))
field B.F

denies { get } to method A.M
unless trusts(field-type(F), A) or

(trusts(A,B) and trusts(B,A))
field B.F

denies { put } to method A.M
unless trusts(A, field-type(F)) or

(trusts(A,B) and trusts(B,A))

Two additional features of ISOMOD are demonstrated in the
above policy clauses. Firstly, ISOMOD provides a syntax
(i.e., to) for qualifying to which subject a policy clause ap-
plies. As capability acquisition is permitted for some sub-
jects but not others, this discrimination enables fine-grained
access control. Secondly, ISOMOD supports user-defined
predicates and functions for modeling domain-specific rela-
tions. For example, trusts is a user-defined predicate for rep-
resenting the binary trust relation between declared types.

Let us consider a second type constraint from Fig. 5:

(HMS3) If D :� E ∧ D′ � E , then D � D′ ∨ D′ � D.

This constraint is the soul of a property known as hereditary
mutual suspicion [12], which enforces a strong form of sep-
aration of duty [6, 17], so that collusion between mutually-
exclusive roles is severely restricted. The constraint man-
dates that, given an arbitrary domain E , some form of dom-
inance relation must exist between a domain D strongly
dominated by E and a domain D′ dominated by E . An ISO-
MOD encoding of is given below:

class C
denies { extend } to class E

unless
domain(E) implies
for D in strongly-dominated(E) :

for D′ in dominated(E) :
dominates(D,D′) or dominates(D′,D)

Our goal is to verify (HMS3) exactly once for every do-
main E . To this end, we observe that, at the bytecode level,
every declared type extends exactly one superclass, with
java.lang.Object being the only, uninteresting excep-
tion. We therefore “schedule” the verification of (HMS3)
to occur when E extends some dummy class C. The
same technique is used in the encoding of (HMS1) and
(HMS2) (see Appendix A).

Besides DCC, we have also completely encoded the
class-based access control mechanism of Java [19, Sect.
5.4.4] (i.e., public, protected, private, etc) as an ISOMOD

policy. These exercises demonstrate the expressiveness and
versatility of the ISOMOD policy language.

5. Implementation Experience

ISOMOD has been fully implemented (in approximately
10,000 lines of pure Java code). This section reports our
implementation experience.

Challenges. We begin by describing the technical chal-
lenges our implementation strategy attempts to address:

Stage-I Preloading of Declared Type C
1. Retrieve the classfile of C.
2. Perform stage-I preloading on the supertypes of C. Cir-

cular preloading is detected.
3. Check the “extend” and “implement” accesses of C.
4. Cache a lightweight representation of C, recording its

type interface and the remaining external accesses.
Stage-II Preloading of Declared Type C
1. Perform stage-I preloading on C.
2. Perform stage-II preloading on the supertypes of C.
3. Perform stage-I preloading on the return types and pa-

rameter types of methods declared in C, and the field
types of fields declared in C.

4. Check the “override” accesses of C.
Stage-III Preloading of Declared Type C
1. Perform stage-II preloading on C.
2. Perform stage-III preloading on the supertypes of C.
3. Perform stage-II preloading on the declaring classes of

any fields or methods that are the targets of some re-
maining external accesses associated with C.

4. Check the remaining external accesses of C.
5. Authorize the definition of declared type C.

Figure 6. Preloading Algorithm

1. Efficiency. Class loading and policy evaluation incur a
significant link-time overhead, slow down application
start-up, and should thus be minimized.

2. Early enforcement. Class definition [19, Sect. 5.3.5]
is irrevocable. Policy enforcement must be complete
before a classfile is converted into a Class.

3. Circularity. Circular dependency between type inter-
faces may arise from forward references. Policy eval-
uation must handle circularity gracefully.

4. Attribution correctness: Policy violation should be
attributed to the offending classfiles (i.e., subjects)
rather than the offended classfiles (i.e., targets). Only
the definition of the subjects should be denied.

Three-Staged, Lightweight Preloading. We adopted a
design that adequately addresses the above technical chal-
lenges. Specifically, before a declared type is defined, its
corresponding classfile is preloaded and screened for policy
violation. Preloading is divided into three stages (Fig. 6).
In the first stage, all “extend” and “implement” accesses are
checked, and a lightweight representation of the preloaded
classfile’s type interface is constructed. In stage two, all
“override” accesses are checked, and external type refer-
ences appearing in the type interface are resolved. In the
third stage, all remaining external accesses are checked.
This design performs shallow preloading eagerly, but main-
tains lightweight type mirrors to anticipate deep preloading.

0

2

4

6

8

10

12

14

ZipDiff JavaTar JavaCC Kawa JRuby SableCC

Applications

R
u

n
n

in
g

 T
im

e
(s

ec
)

Control
NULL
AllowAll
JAC
DCC

Figure 7. Overhead of ISOMOD

The lazy preloading strategy breaks circularity, and cor-
rectly attributes policy violations to the offending classfiles.
The preloading algorithm is detailed in Fig. 6. This design
is informed by previous work on modular bytecode verifi-
cation in the presence of lazy, dynamic linking [13, 11].

Performance Evaluation. We conducted experiments to
profile the performance of our implementation strategy. We
measured the running time of 6 open source Java applica-
tions under 5 configurations on a stock PC (P4 3GHz). The
first configuration, Control, is to run an application in a bare
JVM. In the other four configurations, the applications are
loaded by an ISOMOD class loader. These configurations
differ in the ISOMOD policy being imposed. The NULL
configuration imposes an empty policy that allows all ac-
cesses. The AllowAll configuration imposes a policy with
policy clauses that match and allow every access. The JAC
and DCC configurations impose the ISOMOD encoding of
Java’s access control mechanism and DCC respectively (see
Sect. 4.3). Five trials were repeated for each configuration
to account for variability, and the average running time (in
seconds) is reported in Fig. 7. A number of observations
can be made of Fig. 7. Firstly, the overhead of ISOMOD

for a given application is the difference in running time be-
tween an ISOMOD configuration and the Control configura-
tion. Notice that this overhead never exceeds 3.5 seconds in
our experiments. This confirms that the technology is fea-
sible for practical applications. Secondly, the difference in
running time between the NULL and Control configurations
roughly provides an estimate of the overhead contributed by
the maintenance of type mirrors. The rest of the overhead
can be attributed to policy evaluation. Thirdly, the over-
head contributed by ISOMOD does not grow with the total
running time of an application. This can be explained by
noticing that ISOMOD only incurs overhead at the time of
application start-up. For a long-running application (e.g.,

SableCC), the overhead will be amortized away.

6. Concluding Remarks

Limitations Enforcement mechanisms that are based
solely on static analysis, of which ISOMOD is an example,
are provably less powerful than those that employ execution
monitoring [14]. For example, policies in which authoriza-
tion decision is a function of invocation arguments or exe-
cution history are not enforceable by ISOMOD. Our goal
is not to match the expressiveness of execution monitoring,
but rather to find a lightweight alternative to interposition
when full-fledged execution monitoring is not necessary.

Related Work As surveyed in Sect. 1, language-
based software isolation has been achieved mostly by
interposition-based mechanisms in the past. Early
language-based systems such as Scheme 48 [22], Safe-Tcl
[21] and SPIN [4] adopt namespace management as a pri-
mary protection mechanism. Two component mechanisms
are involved. Firstly, dynamic linking dispatches monitor-
ing code when system services are invoked. This is sim-
ply another form of interposition. A Java incarnation of
linking-based interposition is described in [31]. Secondly,
rudimentary name visibility control is employed to hide cer-
tain names in a namespace. None of the policy clauses in
Sect. 4.2 and 4.3 can be enforced in this manner. We have
thus demonstrated that name visibility control can in fact be
much more expressive than conventional belief.

The study of module systems has a long history [16].
We highlight some recent developments on the Java front.
JavaMod [2] is a module system for Java-like languages.
The interaction between modularity and subtyping is care-
fully articulated. Bauer et al [3] extend the Java package
facility to obtain a module system that supports the deco-
ration of import statements with linking obligations, which
are in turn implemented as digital signatures. MJ [7] is a
module system designed to control the complexity of con-
figuration management in Java platforms. Liu and Smith
[20] describe a module system that supports the declaration
of bi-directional interfaces. Designed primarily for access
control, ISOMOD is unique in two ways: (1) name visibil-
ity constraints can be imposed dynamically; (2) fine-grained
name visibility constraints can be expressed in the ISOMOD

policy language to control not only what names are visible,
but also to whom and to what extent they are visible.

This work has been informed by the recent work in en-
capsulation policies [24, 23]. Specifically, the designer of
a class A associates to A a fixed number of access con-
trol policies, each presenting a different view of A. A
client class B then selects a policy through which B inter-
acts with A. Three points of comparison are worth noting.
Firstly, because the client decides which policy to adopt, the

scheme cannot be used for protection. Secondly, policies
are formulated on a per-class basis, the universally quanti-
fied access control rules described in Sect. 4 cannot be ex-
pressed. Thirdly, ISOMOD defines a wider collection of ac-
cess rights, thereby differentiating finer levels of visibility.

Future Work We are interested in extending ISOMOD

into a full-fledged authorization system in the style of
JAAS. Another direction is to study ISOMOD policy refine-
ment and composition. We are also interested in employing
ISOMOD to enforce communication integrity.

Acknowledgments This work was supported in part by
an NSERC Discovery Grant.

References

[1] M. Abadi and C. Fournet. Access control based on execution
history. In Proceedings of the 10th Annual Network and Dis-
tributed System Security Symposium, San Diego, CA, USA,
Feb. 2003.

[2] D. Ancona and E. Zucca. True modules for Java-like lan-
guages. In Proceedings of the 15th European Conference on
Object-Oriented Programming, pages 354–380, Budapest,
Hungary, June 2001.

[3] L. Bauer, A. W. Appel, and E. W. Felten. Mechanisms for
secure modular programming in Java. Software - Practice &
Experience, 33(5):461–480, Apr. 2003.

[4] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fi-
uczynski, D. Becker, C. Chambers, and S. Eggers. Exten-
sibility, safety and performance in the SPIN operating sys-
tem. In Proceedings of the 5th ACM Symposium on Oper-
ating Systems Principles, pages 267–284, Copper Mountain,
CO, USA, Dec. 1995.

[5] G. Bracha and D. Ungar. Mirrors: Design principles for
meta-level facilities of object-oriented programming lan-
guages. In Proceedings of the 19th ACM Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, pages 331–344, Vancouver, BC, Canada, Oct.
2004.

[6] D. D. Clark and D. R. Wilson. A comparison of commercial
and military computer security policies. In Proceedings of
the 1987 IEEE Symposium on Security and Privacy, pages
184–194, May 1987.

[7] J. Corwin, D. F. Bacon, D. Grove, and C. Murthy. MJ: A
rational module system for Java and its applications. In Pro-
ceedings of the 18th ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages
241–254, Anaheim, CA, USA, Oct. 2003.

[8] J. B. Dennis and E. C. V. Horn. Programming semantics
for multiprogrammed computations. Communications of the
ACM, 9(3):143–155, Mar. 1966.

[9] ECMA. Standard ECMA-335: Common Language Infras-
tructure (CLI), 2nd edition, Dec. 2002.

[10] D. Evans and A. Twyman. Flexible policy-directed code
safety. In Proceedings of the 1999 IEEE Symposium on Se-
curity and Privacy, pages 32–45, Oakland, CA, USA, May
1999.

[11] P. W. L. Fong. Pluggable verification modules: An exten-
sible protection mechanism for the JVM. In Proceedings
of the 19th ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 404–
418, Vancouver, BC, Canada, Oct. 2004.

[12] P. W. L. Fong. Discretionary capability confinement. In Pro-
ceedings of the 11th European Symposium on Research in
Computer Security, Hamburg, Germany, Sept. 2006.

[13] P. W. L. Fong and R. D. Cameron. Proof linking: Modular
verification of mobile programs in the presence of lazy, dy-
namic linking. ACM Transactions on Software Engineering
and Methodology, 9(4):379–409, Oct. 2000.

[14] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Com-
putability classes for enforcement mechanisms. ACM
Transactions on Programming Languages and Systems,
28(1):175–205, Jan. 2006.

[15] N. Hardy. The confused deputy: or why capabilities might
have been invented. Operating Systems Review, 22(4):36–
38, Oct. 1988.

[16] R. Harper and B. C. Pierce. Design considerations for ML-
style module systems. In B. C. Pierce, editor, Advanced Top-
ics in Types and Programming Languages, chapter 8, pages
293–346. MIT Press, 2005.

[17] N. Li, Z. Bizri, and M. V. Tripunitara. On mutually-exclusive
roles and separation of duty. In Proceedings of the 11th
ACM Conference on Computer and Communications Secu-
rity, pages 42–51, Washington DC, USA, Oct. 2004.

[18] S. Liang and G. Bracha. Dynamic class loading in the Java
virtual machine. In Proceedings of the 13th ACM Conference
on Object-Oriented Programming, Systems, Languages and
Applications, pages 36–44, Vancouver, BC, Canada, Oct.
1998.

[19] T. Lindholm and F. Yellin. The Java Virtual Machine Speci-
fication. Addison Wesley, 2nd edition, 1999.

[20] Y. D. Liu and S. F. Smith. Modules with interfaces for
dynamic linking and communication. In Proceedings of
the 18th European Conference on Object-Oriented Program-
ming, Oslo, Norway, June 2004.

[21] J. K. Ousterhout, J. Y. Levy, and B. B. Welch. The Safe-Tcl
security model. In G. Vigna, editor, Mobile Agents and Se-
curity, volume 1419 of Lecture Notes in Computer Science.
Springer-Verlag, 1998.

[22] J. A. Rees. A security kernel based on the lambda-calculus.
A. I. Memo 1564, MIT, 1996.

[23] N. Schärli, A. Black, and S. Ducasse. Object-oriented encap-
sulation for dynamically typed languages. In Proceedings
of the 19th ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 130–
149, Vancouver, BC, Canada, Oct. 2004.

[24] N. Schärli, S. Ducasse, O. Nierstrasz, and R. Wuyts. Com-
posable encapsulation policies. In Proceedings of the 18th
European Conference on Object-Oriented Programming,
Oslo, Norway, June 2004.

[25] F. B. Schneider. Enforceable security policies. ACM Trans-
actions on Information and System Security, 3(1):30–50,
Feb. 2000.

[26] F. B. Schneider, G. Morrisett, and R. Harper. A language-
based approach to security. In Informatics: 10 Years Back,
10 Years Ahead, volume 2000 of LNCS, pages 86–101.
Springer, 2000.

[27] M. D. Schroeder. Cooperation of Mutually Suspicious Sub-
systems in a Computer Utility. Ph.D. thesis, MIT, 1972.

[28] L. Snyder. Formal models of capability-based protection
systems. IEEE Transactions on Computers, 30(3):172–181,
Mar. 1981.

[29] Úlfar Erlingsson and F. B. Schneider. IRM enforcement of
Java stack inspection. In Proceedings of the 2000 IEEE Sym-
posium on Security and Privacy, pages 246–255, Berkeley,
CA, USA, May 2000.

[30] D. S. Wallach, A. W. Appel, and E. W. Felten. SAFKASI:
A security mechanism for language-based systems. ACM
Transactions on Software Engineering and Methodology,
9(4):341–378, Oct. 2000.

[31] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. Ex-
tensible security architecture for Java. In Proceedings of
the 16th ACM Symposium on Operating Systems Principles,
pages 116–128, Saint Malo, France, Oct. 1997.

[32] I. Welch and R. J. Stroud. Using reflection as a mechanism
for enforcing security policies on compiled code. Journal of
Computer Security, 10(4):399–432, 2002.

A. An ISOMOD Policy for DCC

policy DCC
default allow

// (DCC1)
method B.N

denies { invoke } to method A.M
unless (not static(N)) or trusts(B,A)

// (DCC2)
class C

denies { catch, cast, new } to method A.M
unless trusts(C,A)

method B.N
denies { invoke } to method A.M

unless trusts(return-type(N), A) or
(trusts(A,B) and trusts(B,A))

field B.F
denies { get } to method A.M

unless trusts(field-type(F), A) or
(trusts(A,B) and trusts(B,A))

field B.F
denies { put } to method A.M

unless trusts(A, field-type(F)) or
(trusts(A,B) and trusts(B,A))

// (DCC3)
method B.N

denies { invoke } to method A.M
unless

(trusts(A,B) and trusts(B,A)) or
(for C in parameter-types(N) :

trusts(C,B) or
(trusts(B,M) and trusts(C,M)))

// (DCC4)
method B.N

denies { invoke } to method A.M
unless trusts(N,M)

// (DCC5)
class B

denies { extend, implement } to class A
unless trusts(B,A)

// (DCC6)
method B.N

denies { override } to method A.M
unless trusts(M,N)

method B.N
denies { override } to method A.M

unless trusts(return-type(N), B) or
(trusts(A,B) and trusts(B,A))

method B.N
denies { override } to method A.M

unless
(trusts(A,B) and trusts(B,A)) or
(for C in parameter-types(N) : trusts(C,A))

// (DCC7)
class B

denies { extend, implement } to class A
unless strongly-trusts(B,A)

// (HMS1)
class C

denies { extend } to class E
unless

domain(E) implies
strongly-dominates(E , org.aegis.dcc.Root)

// (HMS2)
class C

denies { extend } to class E
unless

domain(E) implies
for D in strongly-dominated(E) :

dominates(E ,D)

// (HMS3)
class C

denies { extend } to class E
unless

domain(E) implies
for D in strongly-dominated(E) :

for D′ in dominated(E) :
dominates(D,D′) or dominates(D′,D)

