CTCP: A Transparent Centralized TCP/IP Architecture for Network Security

Fu-Hau Hsu

Tzi-cker Chiueh

Computer Science Department
State University of New York at Stony Brook
Stony Brook, NY 11794-4400
Email: {fhsu, chiueh} @cs.sunysb.edu

Abstract

Many network security problems can be solved in a cen-
tralized TCP (CTCP) architecture, in which an organiza-
tion’s edge router transparently proxies every TCP con-
nection between an internal host and an external host on
the Internet. This paper describes the design, implemen-
tation, and evaluation of a CTCP router prototype that is
built on the Linux kernel. By redirecting all packets target-
ing at non-existent or non-open-to-public ports to a CTCP
socket which pretends to be the original receivers, CTCP
could confirm the real identification of the packet sources,
collect suspicious traffic from them, and make an illusion
that the scanned target ports are all open, thus renders
port scanning an useless effort. Under CTCP architecture,
external hosts only interacts with a secure CTCP router;
therefore, any OS fingerprinting attempt and DoS/DDoS
attack targeting at TCP/IP implementation bugs could be
thwarted. Moreover, By further checking traffic originat-
ing from confirmed scanners, the CTCP router can ac-
tually identify buffer overflow attack traffic. Finally, the
CTCP router solves the TCP connection hijacking problem
by introducing an additional check on the sequence number
filed of incoming packets. Despite providing a rich variety
of protection, the CTCP architecture does not incur much
overhead. On a 1.1GHz Pentium-3 machine with gigabit
Ethernet interfaces, the throughput of the CTCP router is
420.3 Mbits/sec, whereas the throughput of a generic Linux
router on the same hardware is only 409.1 Mbits/sec.

1. Introduction

Traditionally the TCP/IP stack! is implemented at each
end host. This paper advocates a centralized TCP/IP

1'We use the term TCP/IP stack to refer to the entire Internet protocol
suite, including UDP and ICMP.

(CTCP) architecture in which an organization’s edge router
transparently splits each TCP connection between an inter-
nal host and an external host into two TCP connections, one
between the internal host and itself, and the other between
itself and the remote host. As a result, the only TCP/IP stack
that remote hosts get to interact with is the one on the edge
router (called CTCP router hereafter) and many network se-
curity problems can be easily solved in this architecture.

Many denial of service attacks [39] exploit implementa-
tion bugs in the TCP/IP stack or weaknesses in the TCP/IP
specification. For example, the Ping of Death attack cre-
ates an IP packet that exceeds the maximum IP packet size
allowed according to the IP protocol specification (65,536
bytes), and sends it to the victims, which may crash, hang,
or reboot when they receive such a packet. The Teardrop
attack sends a series of IP fragments with overlapped off-
set fields to the victims, which may crash, hang, or re-
boot when trying to reassemble them. Weaknesses in the
TCP/IP specification leave it open to SYN flood attacks.
The Smurf attack is a brute-force attack targeted at a feature
in the IP specification known as direct broadcast addressing.
Under the CTCP architecture, as long as the TCP/IP stack
of an organization’s CTCP router is correctly implemented,
none of the above DOS attacks are possible with its internal
hosts. In other words, CTCP greatly simplifies the process
of “patching” TCP/IP stack implementation.

Many network attacks start with OS fingerprinting and
port scanning to first identify the OS type and the set of
services in a remote host, and then determine the proper at-
tack strategy. Both OS fingerprinting and port scanning are
typically based on reactions of a sequence of probe pack-
ets. Therefore, if these probe packets can be detected, it
is possible to identify not only the attacking hosts but also
the packets used in the attack. Under the CTCP architec-
ture, it is impossible to fingerprint the OS type of internal
hosts because it is the CTCP router that responds to probe
packets. Moreover, the CTCP router is in a better position
to detect port scanning activities because it examines the



source/destination address/port number fields in TCP pack-
ets. Finally, the CTCP router provides an effective plat-
form for applying honey-pot technique [15] to capture at-
tack packets.

A network intrusion detection system (NIDS) compares
packets against a signature database to identify potential at-
tack packets. There are well known techniques [21, 22] to
invade the detection of such systems. Basically these in-
vasion methods exploit differences in interpreting certain
parts of an incoming packet between the TCP/IP stack on an
NIDS and that on an end host, for example, the TTL field
and overlapped IP fragments. Under the CTCP architec-
ture, none of these invasion techniques work because there
is only one TCP/IP stack to the outside world, and the NIDS
is based on its interpretation of the incoming packets.

In addition to security benefits, the CTCP architecture
also offers several performance advantages. First, because
all TCP connections with external hosts terminate at the
CTCP router, it can manage their congestion control win-
dows by taking into account the bandwidth sharing effect
among connections that go to the same remote subnet [10].
One immediate benefit is that a new TCP connection’s con-
gestion window does not have to grow from scratch, but
from some larger value that past history suggests is appro-
priate. Second, because the CTCP router performs connec-
tion splicing for every TCP flow, it provides an additional
level of indirection that is useful in such applications as
server load balancing and fault tolerance.

This paper presents the design, implementation, and
evaluation of a fully operational CTCP router that is built
on the Linux kernel. To demonstrate the usefulness of this
CTCP router, we show how it can be used to prevent OS fin-
gerprinting, to detect port scanning, to identify buffer over-
flow attack packets, and to stop TCP connection hijacking
attacks. In addition, the throughput of the CTCP router pro-
totype is actually slightly higher than that of a generic Linux
router on the same hardware. This shows that it is feasible
to implement the CTCP architecture on a gigabit/sec router,
which should be more than enough for most enterprises’
connection to the Internet.

This paper is organized as follows. Section 2 describes
the specific security threats that the CTCP router prototype
addresses in this paper. Section 3 details the system archi-
tecture of the CTCP router, and the functions of its com-
ponents. Section 4 presents the results of testing the ef-
fectiveness and performance of the CTCP router prototype.
Section 5 reviews previous efforts to deal with the secu-
rity issues that the CTCP architecture addresses. Section 6
concludes this paper with a summary of the major contribu-
tions, and a brief outline of on-going work.

2. Motivations

In this section, we discuss the main motivations behind
the CTCP architecture, in particular, prevention of OS fin-
gerprinting and port scanning, centralized implementation
of TCP/IP stack, and buffer overflow attack detection.

2.1. Reconnaissance Deterrence

A typical network attack proceeds in the following
stages. First, the attacker scans the Internet to determine
the operating system and the services on each host that re-
sponds to the scan packets. Then, the attacker attempts to
compromise a remote host based on vulnerabilities known
to exist on the host’s associated OS/services combination.
If any of the attacks succeeds, the attacker then installs the
attack program on the victim host to include it in the future
attack. Because the process of “recruiting” new attack hosts
is completely automated, this worm-like network attack can
increase the number of attack hosts exponentially and even-
tually covers most of the vulnerable hosts on Internet within
a few minutes to an hour [26].

TCP and UDP ports are a host’s communication chan-
nels with other hosts. A port is called open when there is a
program listening on it. Through an open port a TCP/UDP-
based application program could exchange data with other
software. To identify the set of open ports on a remote host,
a port scanning program can simply connect to all possible
ports, and determine the set of ports on which the host ac-
tually listens. According to the TCP/IP protocol, an open
port behaves differently than a close port. For example an
open port must reply a SYN packet with a SYN/ACK packet
and a close TCP port must reply a SYN packet with a RST
packet. Hence, by observing a remote host’s responses to
carefully crafted packets, a port scanner can deduce whether
a port is open on the host. Based on this principle, a wide
variety of port scanning tools [1, 2] have been developed.

The TCP/IP protocol specification leaves some room for
implementation flexibility, such as the initial sequence num-
ber, the initial window size, the DF bit, the ToS setting, how
two fragments with overlapped offsets should be handled,
etc. The TCP/IP stack implementations of different oper-
ating systems can freely choose how to exploit this flexi-
bility. As a result, it is possible for an OS fingerprinting
tool to identify an operating system based on its responses
to a sequence of probe packets. The collective response of
an operating system to this packet sequence constitutes its
fingerprint. For example, when a TCP/IP stack receives a
packet that is neither SYN nor ACK and is destined to a
non-open port, the correct response according to RFC 793
is not to respond; however, many implementations such as
MS Windows, BSDI, CISCO, HP/UX send back a RESET
packet. Some OS fingerprinting tools are active in that they



send probe packets to target machines to collect informa-
tion. Nmap [3] and Xprob [4] are most popular active fin-
gerprinting tools. Others are passive in that they just ob-
serve the traffic associated with the monitored host to col-
lect information. The value of the Time to Live (TTL) field,
the initial window size in the TCP header, and the values of
DF bit and TOS field in the IP header are the common mon-
itor targets. pOf [5] and siphon [6] fall into this category.

One way to defeat the automated attack scheme used by
worms is to stop them at the reconnaissance phase, i.e., pre-
venting them from knowing the OS type and network ser-
vices on the innocent hosts. The centralized CTCP archi-
tecture effectively hides the OS type information of inter-
nal hosts because OS fingerprinting tools can only see the
TCP/IP stack of an organization’s CTCP router.

2.2. Detection of Buffer Overflow Attack

Buffer overflow attack [11, 12] is one of the most sig-
nificant security threats to the Internet today. It overwrites
some control-sensitive data structure (a return address or
function pointer) of a victim application so that the appli-
cation’s control is re-directed to an injected code or a libc
function [13] ( return-to-libc attack). Various approaches
have been proposed to solve this problem. However, most
if not all of them involve modifications to the applications
or operating systems on the end hosts. As a result, their
adoption in practice has been rather limited.

The key to a successful buffer overflow attack is to suc-
cessfully overwrite the target control-sensitive data struc-
ture in the victim application. However, the exact address
of the target control-sensitive data structure may vary from
instance to instance even for the same source code for the
following reasons:

e Environment variables and command line arguments
(including the name of the command) will influence
the location of the main() function’s stack frame, hence
the stack frames of all subsequently called functions.

e Due to the alignment requirement, a compiler doesn’t
necessarily allocate memory for variables according to
the order they appear in the source code.

e For the same code, different compilers used by differ-
ent OSes could create different memory layout for the
same set of variables. In other words, for a C program,
the memory layout of a set of variables created by a
Linux host could be different from the one created by
a Solaris host.

e Address obfuscation [14] compilers insert byte strings
into memory areas for variables to further change the
memory layout. The length of the inserted byte string
is randomly generated at compile time or at run time.

Hence, to maximize the success rate of a buffer overflow
attack, attackers typically repeat the string used to overwrite
the target control-sensitive data structure multiple times in
the attack packets. In the case of return-into-libc attacks, the
repeating string consists of the entry point of the libc func-
tion, the previous frame pointer, and the input arguments. In
other cases, the repeating string consists of the entry point
of the injected code only. For the 6 exploit strings [8, 9] we
checked (LFTP, ATPHTTPd, in.telnetd, samba, INND, and
TCPdump) the repeating times are all above 10.

2.3. Stopping TCP Connection Hijacking

Sequence number implicitly plays an authentication role
in TCP connections. When a TCP packet whose sequence
number is outside the associated socket’s receiving window
is received, it is dropped and an ACK packet that includes
the expected receiving window information is sent back. On
the other hand, if an incoming TCP packet is accepted by
a socket, then the socket’s receiving window changes ac-
cordingly. Therefore, if an attacker can correctly guess the
sequence number of an on-going TCP connection, she can
both send forged data to and change the receiving window
of an end point of this connection. For a TCP connection
between two hosts, H, and Hj, sending forged packets to
H, could cause it to ignore data sent by Hp; moreover, if
H, sends any reply to the forged packets, both the hijacker
and Hj will receive it. The above two results will create
abnormal and detectable behavior at H, whose most likely
response is to close its socket. The close will not close H,’s
socket immediately, because Hj’s packets will be dropped
by H,. After Hy’s close, any packet of the hijacked con-
nection from H, will result in H}’s sending back a RST
packet which has correct sequence number and will close
H,’s socket.

However, if the hijacker changes both hosts’ receiving
windows at the same time and temporarily suppresses their
responses to the forged packets before the hijacking is fin-
ished, as Joncheray’s [34] DO-NOT ECHO case does, then
she can take over the TCP connection silently and each of
the original two hosts is fooled into thinking it is communi-
cating with the other host as usual when in fact it is commu-
nicating with the attacker. In this case, packets sent by one
host are always dropped by the other host, and additional
ACK packets are generated, which in turn are dropped and
trigger more ACK packets. This positive feedback loop cre-
ates a TCP ACK storm. To defeat the TCP connection hi-
jacking , special attention should be paid to the above silent
hijacking. With the CTCP architecture, once the TCP/IP
stack on the CTCP router incorporates such special pro-
cessing, all the internal hosts are protected from the TCP
connection hijacking.



3. CTCP System Architecture

Mac OS Xv 10.2 Linux 1.0 OpenBSD 2.4

&7 CTCP Host
=

Figure 1. Geographic Location of A CTCP Router.

‘
g

-
—— (I

Window 2000

= %

Solaris 2.6 Linux 2.6

0
o

0!

A CTCP router performs the same role as a standard edge
router for an organization, and oversees all the packets com-
ing in and getting out of that organization, as shown in Fig-
ure 1. As a result, the TCP/IP stack on the CTCP router is
the stack with which all remote hosts interact. In the follow-
ing, we will call TCP/IP packet header fields (e.g. protocol
type field, TTL, FLAGS, and IP identification field), their
length and the retransmission time-out values (RTOs) [7],
as Transmission Meta Data (TMD).

3.1. Strategies

In the CTCP architecture, the CTCP router splits each
TCP connection between an inner host and a remote host
into two TCP connections using a special listening socket
called gate socket and the nonlocal binding mechanism [27,
28]. This split-connection structure allows the CTCP router
to relay only the payload portion of incoming/outgoing
packets, but none of their TMD. Consequently, malicious
TMD from attackers can never reach inner hosts and TMD
from inner hosts that can potentially reveal their OS type
never get to remote attackers.

In addition, the CTCP router redirects all packets target-
ing at non-existing hosts or non-open-to-public ports to a
CTCP socket called police socket, which is created by an
user-level process called the operative. The operative per-
forms two functions. First, it creates an illusion that there
is a host behind every public IP address and every port on
each of such hosts is open, essentially rendering port scan-
ning a useless exercise. Second, it tries to interact with re-
mote attackers that attempt to access non-existent hosts or
non-open ports so that it can collect their IP address and the
attack packets. Once attack hosts are identified, TCP traffic
from these hosts is also redirected to the police socket.

Traffic collected by the operative is in turn given to an-
other user-level process called MCI (malicious code incu-
bator), which uses a heuristic method to identify buffer
overflow attack and return-into-libc attack. This heuristic
is based on the following observation: most if not all ex-
ploit strings used in buffer overflow attacks and return-into-
libc attacks include repeated patterns in order to increase

the likelihood of overwriting a certain control-sensitive data
structure in the victim program. For a buffer overflow at-
tack, the repeated pattern is the entry point of a piece of
injected code, which is most likely on the stack. For a
return-into-libc attack, the repeated pattern includes the en-
try point of the target libc function, the address of its first
argument, and its arguments. To further restrict the values in
the repeated pattern, we exploit the fact that entry point ad-
dresses of libc functions must be aligned on a 4-byte bound-
ary, and that they must be within a certain range of the ad-
dress space. For example, in Linux, the user-level stack
starts from address Oxbfffffff and grows downward [16].
The default maximum size of a process’s user-level stack is
2Mbytes [38], but because the average function frame size
is 28 bytes [31, 32], most programs are not supposed to use
a 2Mbyte stack. In our test, a 8k stack is enough to detect
the 6 exploit code. A Linux shared library should be within
the range that starts at address 0x40000000 and ends at the
beginning of the stack, i.e., Oxbfffffff-2M.

Based on the above facts, MCI uses the following rule
to recognize buffer overflow attacks: If an input string con-
tains a stack address that repeats 3 times, then it is regarded
as a buffer overflow attack; if an input string contains at
least 3 copies of a special libc pattern mentioned above,
then it is regarded as a return-into-libc exploit string. An
input string here refers to all the bytes sent from an outside
host to an inner host in a TCP connection.

When a host, say H,, receives a TCP packet whose se-
quence number is outside its receiving window and whose
source is Hj, there are two possibilities. First, this is a
packet sent by the other end of a hijacked TCP connection,
i.e. Hy. Second, this is a packet that somehow gets trapped
in the Internet and later re-emerges. A trapped packet’s ack
number should be smaller than or equal to H,’s sending
window. However if the packet belongs to a hijacked con-
nection, it should contain an ack number larger than H,’s
sending window, because in order to avoid H}’s receiving
H,’s responses to the hijacker’s packets, the hijacker must
increase Hp’s receiving window before H, sends any pay-
load packet. Thus, whenever CTCP receives a packet whose
sequence number is outside the receiving socket’s receiv-
ing window, CTCP further checks the packet’s ack number.
If the ack number is larger than the local socket’s sending
window, then CTCP sends back a RST packet with the re-
jected packet’s ack number as its sequence number. This
way, CTCP avoids disconnecting a connection due to the
arrival of trapped packets but disconnect those connections
that are hijacked.

3.2. System Components

A CTCP router consists of 4 major components and two
listening sockets as shown in Figure 2. The Traffic Arbitra-



‘ Malicious Code Incubator

4—@

User Space

Kernel

Event List

Q Gate Socket

Police Socket

[ Traffic Arbitrator (TA) J

!

NIC NIC

Connect to Outside INTERNET . 1
Connect to Intler Network

Figure 2. System Structure of A CTCP Router. Each
Block Represents A System Component. An Arrow
Represents Data Flows between Components.

tor (TA) and the Connection Management Unit (CMU) are
in the kernel. The other two components, the operative and
Malicious Code Incubator (MCI), are user-level processes.
The police socket is created by the operative. The operative
and MCI only process suspicious traffic. So, for normal
traffic processing there is no context switch between user-
level code and kernel-level code. In addition, for normal
traffic there is no data copying between the user and kernel
address space.

TA’s major responsibility is to assign incoming pack-
ets to appropriate handlers which could be the Connection
Management Unit (CMU), the operative, or itself. Because
CTCP receives and transmits data on behalf of the inner
hosts, it breaks each TCP connection into two separate sub-
connections: One sub-connection links a CTCP port to an
inner host port and the other joins an outside host port and
another CTCP port. One of the above two TCP ports is
always a clone of the listening gate socket. Each one of
the above two sub-connections is called the buddy connec-
tion of the other. CTCP uses CMU to manage these sub-
connections and pipeline data between a sub-connection
and its buddy connection(see Figure 3).

Connection Management Unit (CMU) consists of two
major components, event generator and event handler, and
two major data structures, event list and data bridge. The
event generator is responsible for transforming packets
coming from TA into corresponding events and then ap-
pending them into the event list along with the addresses
of the packets’ receiving sockets. An event can be the fin-
ish of a three way handshaking, data arrival, or a discon-
nection request. The event handler takes events from the
event list and processes the events according to their con-

clone (©) Gate Socket Data Bridge
Front Half @-‘-@ Rear Half
Buddy Socket
@ Original Direct Connection '
HOST A CTCP HOST B

Figure 3. Connection Division. Each TCP Connec-
tion Is Split into Two Sub-connections at CTCP.

tents. The data bridge is shared by a sub-connection and its
buddy connection, and is used to exchange data (not pack-
ets) between them. When detecting stealthy TCP hijacking
indicator packets, CMU is responsible for disconnecting the
hijacked connection through RST packets.

TA redirects suspicious TCP traffic, which includes all
packets destined to non-existent hosts and non-open-to-
public ports, to the operative. After gathering enough
packets from potential attackers, the operative gives them
to the Malicious Code Incubator (MCI). These two com-
ponents are designed to confirm the identifications of at-
tacker hosts and check whether the collected packets con-
tain buffer overflow attack exploit strings or return-into-libc
exploit strings using the heuristics described above.

3.3. Data Flows Inside a CTCP Router

When a packet arrives at CTCP, it is given to the traffic
arbitrator first. According to its addresses, TA assigns it to
an appropriate handler, which could be CMU, the operative,
or the TA itself if it decides to drop the packet. The 3 main
data flow paths within the CTCP router are:

1. NIC, & TA & CMU < NIC;
2. NIC, & TA < Operative & MCI < NIC),
3. NIC, & TA

Packets on legitimate connections, e.g., incoming con-
nections to open-to-public ports or outgoing connections,
travel through the first path. Suspicious packets take the
second path. And all unsafe and unnecessary packets are
dropped through the third path. Finally, under the following
situations TA drops packets directly without handing them
to any handler, because either these packets could reveal
critical security-related information of inner hosts or these
packets contain attack code:

e ICMP and UDP packets heading to inner hosts.

e Incoming packets match an attack signature.



4. Effectiveness Analysis and Performance
Evaluation

=

= ==
Outside Client Host CTCP
Pentium 3 (1133MHz) Pentium 4

Inner Host

Pentium 4

Figure 4. Experiment Setup. All hosts use Gigabit
NICs.

This section presents experiment results about the effec-
tiveness and throughput of CTCP. Figure 4 describes the test
setup. Outside untrusted clients are executed at a Pentium
4 machine. CTCP resides at a Pentium 3 (1133MHz) host.
Inner servers are run at a Pentium 4 computer. All 3 ma-
chines are equipped with Intel Pro/1000 Giga bit NICs and
run Linux 2.4.7.

4.1. Effectiveness Analysis

In this subsection we analyze the effectiveness of CTCP
in defending against the security threats we are addressing
in this paper.

4.1.1 OS Fingerprinting

In OS fingerprinting test, we use both the active fingerprint-
ing tool, Nmap, and the passive tool, pOf, to probe the inner
host’s OS type with or without CTCP. Table 1 shows the test
results.

Nmap detects an inner host’s OS type by actively sending
probe packets to its targets. However, open ports and closes
ones need different probe packets. E.g. the result of send-
ing a FIN probe packet to an open port could tell a scanner
whether the inner host’s OS type is among MS Windows,
BSDI, CISCO, HP/UX, MVS, and IRIX or not. But the re-
sult of sending a FIN packet to an close port can not tell the
scanner so much information. Hence, in order to infer the
scanned target’s OS type, Nmap must find at least one open
port and one close port at the target so that it can decide
which probe packets should be sent to which ports. There-
fore the first phase of OS fingerprinting is port-scanning.
During this phase plenty of port-scanning packets, e.g. SYN
packets, are sent to different ports of the target.

In the first test of Nmap, the inner host is disconnected.
When the middle host is a Linux router, because Nmap can
not find any open port at the target, it can not make any de-
duction about the target’s OS type. When the middle host
is a CTCP router, because of the work of the operative, all
target host’s ports look like open ports even though the host

|| | Linux Router | CTCP Router ||

Off-Line X Linux 2.4.x -
2.5.x(86%)

Windows 95/98/ME Linux 2.4.x -
XP NT/2K/XP 2.5.x(86%)

Linux Linux 2.4.x - | Linux 2.4.x -
2.4.7-10 2.5x 2.5.x(86%)

Table 1. OS types of inner hosts reported by Nmap.
The router is either a Linux router or a CTCP router.
Both routers run Linux 2.4.7-10 kernel. Each column
represents a different router. Each row describes a
distinct OS used by the inner host. Within a table
entry, ‘X’ means “unable to detect and 86% means
the confidence level Nmap has about a guess.

is disconnected. But all the port-scanning packets are redi-
rected to the police socket whose backlog queue size is only
five, therefore some port-scanning packets, e.g. SYN pack-
ets, will be dropped and the scanner can not receive any re-
sponses associated with those ports that the dropped pack-
ets were heading for. There is no ACK for RST packets,
in other words there is no RST packet retransmission, thus
Nmap will think those ports are closed and will send them
probe packets suitable for close ports. However those ports
are open. This confuses Nmap. So even though Nmap is
supposed to be able to get the OS type of the host that it
interacts with (here the host is CTCP) and misunderstand
CTCP’s OS type as its target’s OS type, Nmap still needs
to guess to get the OS type. Fortunately, this time Nmap’s
guess is right. But even so, this will not cause any problem,
because it is the inner hosts that provide network services
the scanners are interested in and CTCP doesn’t provide
those kinds of services. Moreover, CTCP is supposed to
have the most secure system installed.

In the second test of Nmap the inner host executes Win-
dow XP. If the middle host is a Linux router, the Nmap can
correctly induce inner host’s OS type. If the middle ma-
chine is CTCP, then for the same reason as above, Nmap
still needs to guess. This time Nmap is wrong.

In the third test of Nmap, we install the same OS as
CTCP’s at the inner host to check whether this can help
Nmap avoid guessing. In this test both CTCP and the inner
host use Linux 2.4.7-10 OS. Again when CTCP works as a
normal router, Nmap can correctly infer the inner host’s OS
type and version. But when CTCP’s protection functions
are activated, the results are the same as the second test.

The above results show no matter what OS an inner host
uses, Nmap can not get the correct OS type of the inner host.
The best Nmap can get is the guessed OS type of CTCP.

The test results of pOh are similar to Nmap’s. pOh still
misunderstands CTCP’s OS type as its target’s OS type. But



Stack Size | R=3 | R=10
2MB 0/49 | 0/15
8KB 0/0 0/0

Table 2. Number of false positives when running the
buffer overflow attack detection heuristic against the
test samples. “R=3" means the number of repeated
patterns in the input string has to be equal to or more
than 3. Two stack sizes are used, 2MB And 8KB.
In each entry the left is the number of false positives
for return-into-libc attack, and the right is the num-
ber of false positives for buffer overflow attacks using
injected code.

pOh can accurately deduce, not guess, the OS type of the
host that it interacts with (here it is CTCP).

4.1.2 Exploit String Detector

To test the effectiveness of MCI’s exploit string detector, ob-
ject files (library files, executable files, ... ), document files
(pdf, ps, doc, txt, html, .. .), and picture files (gif, jpg, mpeg,
...) with size 209MB, 183MB, and 11MB respectively are
used. They are randomly chosen from different hosts. For
false negative test, MCI could detect the 6 exploit strings
described in subsection 2.2 correctly.

For false positive test, MCI uses signatures introduced
in subsection 3.1 to examine the test samples with different
stack sizes and distinct numbers of repeating pattern copies.
Table 2 shows the results.

The false positive test results show when stack size is
8k and the number of repeating pattern copies is 3, MCI
has 0 false positive in examining these 404-Mbyte test sam-
ples. Qualitative analysis could explain this results. First, a
Linux stack address starts with Oxbf which is not a visible
ASCII character, therefore we can anticipate this character
will not appear at telnet data, e-mails which don’t have at-
tachments, html files and so on. Second even though this
character could appear in an executable file or in an image
file, in order to cause a false positive alarm, the same pattern
must repeat 3 times. For a binary file, it means if there is
an instruction with that string pattern, then the exact same
instruction must repeat several times in the program. From
our experience, it seems it is not a common situation. Based
on the above analysis, we think even though it is still pos-
sible that the signatures we used will cause false positives,
we can expected it will not be high.

The above tests use static test samples (i.e. files in disks).
Now we are working on getting the test samples dynami-
cally from the network.

4.1.3 Stealthy TCP Connection Hijacking

Hunt [36] and JUGGERNAUT [35] are two popular TCP
hijacking tools. But either the hijacking is visible to the vic-
tims (Hunt) or the hijacking tool automatically quits when
executed in our system (JUGGERNAUT).

In a TELNET case, when hunt is used, one end host of
the hijacked connection can see the letters typed by the hi-
jacker from its own monitor and all this end host’s output
are dropped by its communication counterpart, moreover
when the host terminates the process, the hijacked connec-
tion is also closed. This test shows visible TCP hijacking
could be detected and terminated by the hijacked connec-
tion’s owner. Thus it is not an ideal hijacking tool.

We use a packet construction tool, gspoof [37], and TCP-
DUMP to test CTCP’s effectiveness in defending against
stealthy TCP connection hijacking.

First a TCP connection is created between two host,
HOST-a and HOST-b. Then TCPDUMP is executed at
HOST-a. After gspoof is used to construct a packet that has
HOST-a as it destination and HOST-b as its source and has a
sequence number outside HOST-a’s receiving window, the
packet is send to HOST-a from a third host HOST-c. The re-
sults of TCPDUMP show after receiving the crafted packet,
the correct RST packet is created and sent back.

4.2. Performance Evaluation

In performance test, we analyze the throughput impact
introduced by CTCP. In the tests, different numbers of TCP
connections are opened between the client and the inner
server. Then the client continues pumping data into the in-
ner host. And we measure how many bits per second are
received by the server. Results in Figure 5 shows that CTCP
has a better throughput than a Linux router does. In addi-
tion, as a Linux router, CTCP’s throughputs are not influ-
enced by the number of connections traversing through it.

Analysis and further experiments show the throughput
gains come mainly from two sources. First, under CTCP
architecture, a client host has shorter ACK packet returning
time, and thus could send packets more quickly than it does
under a Linux router. Second, CTCP architecture allows the
processing of a packet and the transmission of next packet
to proceed simultaneously. In other words, when the client
checks the validity of an ACK packet of a previous outgoing
packet, say P, and prepares the next outgoing packet, say
P, CTCP could process P; simultaneously.

5. Related Work

Proxy server is a widely used structure to secure LANs
and improve performance. Under this structure, two com-
munication parties, the client and the server, exchange data



Throughput (Mbits/sec)

& CTCP
A—A Linux Router

;
+
!
;
+
%
a>

| | | 1 |
2000 4000 6000 8000
Number of TCP Connections

o
TTTTTTTTITTTIT I I I T

=)
=3
3
=]

Figure 5. Throughputs of CTCP and a Linux Router,
when the number of TCP connections increases from
1 to 10000.

through a proxy server. In other words, there is no direct
connection between these two entities. The proxy server
accesses data on behalf of them and relay data to their coun-
terparts. Under proxy server structures, external hosts only
interact with the proxy servers; therefore, they provide good
protection against OS fingerprinting.

According to the class of data a proxy server relays,
proxy servers could be further divided into two cate-
gories, the application-level proxies and circuit-level prox-
ies. TIS [23] and transparent proxies [24] belong to the
former. SOCKS [17], Dante [20] and TCPProxy [29] are
circuit-level proxies.

Application-level proxies relay protocol-level data be-
tween end users of TCP connections; thus, this method is
able to provide user-level authentication protection. How-
ever in order to forward protocol-level data, a proxy must
understand the protocol involved. In other words, each
protocol needs its own application-level proxy. Both TIS
and transparent proxies are application-level proxies. For
transparent proxies, the connection between a client and the
proxy is established through redirection. So the proxy is
only transparent to the client, not to the server. In TIS’s
case, the proxy server is not transparent to both hosts;
hence, the ID of the proxy is visible to external hosts.

Instead of application-level data, a circuit-level proxy re-
lays TCP-level data between its users; thus, it is a generic
proxy. As a new network service appears, without modifica-
tions, a circuit-level proxy can process the new application’s
traffic immediately. SOCKS, Dante, and TCPProxy are all
circuit-level proxies. One of the major differences between
them lays on the level of modification that need to make on
the networking libraries, such as socket-related functions.

CTCP utilizes proxy server as a basic platform to de-
velop different security solutions. However in order to en-

sure CTCP’s effectiveness and efficiency, CTCP removes
not only the above problems specific to each proxy server
but also the following common problems.

Most of current proxy servers are user-level processes
which introduce non-trivial overhead upon systems duo to
data copies between user space and kernel space, context
switches between different processes and context switches
between user code and kernel code.

Besides, currently most proxies are not transparent to
their users; hence, one end of a TCP connection may re-
gard a transparent proxy as its communication counterpart.
This property may distract other services. First it exposes
the proxy’s identification, and thus put it under the direct
fire of malicious users. Second, applications based on IP
addresses, such as bandwidth management tools and trusted
hosts, can no long function as expected, because instead of
the real sources’ addresses, they only see the proxy’s ad-
dress. Third, a vicious user inside a proxied network could
easily disable the whole network’s access to outside servers
whose firwalls filter out packets based on their source IP
addresses. All the person need to do is to use the proxy to
connect the target and make the target’s firewall record the
proxy as a bad guy.

Smart et al. [21] solves OS fingerprinting by normalizing
the traffic. In other words, their method, fingerprint scrub-
ber, eliminates the personal styles (e.g. initial sequence
number, window size ... and so on) and ambiguities from
traffic to block OS fingerprinting.

Utilizing similar method, traffic normalizer [22] syn-
chronizes TCP connection’s state at both a NIDS and a
protected host, and thus thwarts malicious users’ attempts
to bypass NIDS’s detection. The above method introduces
only a little overhead over the system and could efficiently
block the powerful OS fingerprinting tools — NMAP.

But in order to provide more security, there are still some
issues needed to be solved. First, modification of TTL field
could disable its functionality and result in invalid packets’
circuiting around in the network. Second, normalization
could not normalize all exploration traffic. For example, in
order to protect itself from SYN flood, some OS stops es-
tablishing connections after being unable to finish several,
say 8, 3-way handshaking processes. As a result, a scanner
can just send 8 forged SYN packets and then makes a real
connection to the target system. All these exploring pack-
ets will not be blocked by the normalizer; hence, later on if
the connection can not be established, then the scanner can
deduce the target system’s OS type, otherwise, the scanner
can know what OS she/he can rule out.

Moreover, both the above methods are not compatible
with SYN cookies which is an useful tool to defeat SYN
flood. Instead of storing state information of an open con-
nection request (such as initialize sequence number and
source IP , destination IP, ... and so on) at a protected



host, SYN cookies encode these information in the initial
sequence numbers of the replying SYN/ACK packets. The
SYN/ACK packets could quickly consume up the normal-
izer’s memory, because all these SYN/ACK packets come
from the trusted side of the normalizer , and the normalizer
is asked to establish state information for packets coming
from the trusted side. Due to the above reasons, under SYN
flood attack, maybe the protected host is still alive because
of the protection provided by SYN cookies, but the normal-
izer is already disable due to running out of memory.

As using repeating addresses in attack strings to increase
the chance to have a successful attack, repeating NOP in-
structions right before the injected code are also widely used
in attack strings. Toth and Kruegel’s solution [30] focus on
detecting the appearance of a sequence of NOP instructions
which they call sledge or their equivalences. In their method
they try to dissemble the packet content, and if a substring
of a packet content could be interpreted as a sequence of 30
or more instructions, an alarm is issued. However it is not a
trivial work to disassemble a packet to find the longest exe-
cution path which may start at any byte inside that packet.
If an attacker on purpose crafts packets that contains numer-
ous execution paths and all of the paths have length less than
30, than the attacker could issue some kind of DoS/DDoS
attacks upon this approach without being detected.

As CTCP, buttercup [25] also uses addresses as hints to
detect buffer overflow attacks. Instead of using a generic
address pattern for all buffer overflow attacks, for each in-
dividual attack string, they need to study the targeted pro-
gram and its buggy overflowed functions to drive a small
range of possible address that could be used to launch a
successful attack. Later on this address range is used as
a signature of the specific attack string; therefore, if any
word of a packet’s payload could be interpreted as an ad-
dress within this range, the packet is classified as an attack
packet. This method simplifies the signatures of known at-
tacks; thus, improves the performance of signature match-
ing. However, for unknown buffer overflow attacks, current
buttercup version doesn’t take them into account.

6. Conclusion and Future Work

In this paper we advocate a centralized TCP/IP archi-
tecture, in which the only TCP/IP stack visible to the out-
side world is the one on an organization’s CTCP router. To
demonstrate its usefulness, we show that it can effectively
stop OS fingerprinting and port scanning, the scouting ac-
tivity for most automated attacks, including worms. In ad-
dition, the CTCP architecture greatly facilitate enterprise-
scale deployment of solutions to vulnerabilities due to
TCP/IP implementation bugs, for example, DoS attacks and
TCP connection hijacking attacks. Finally, the CTCP ar-
chitecture provides a flexible platform for developing hon-

eypots that can apply content filtering techniques to iden-
tify and extract attack packets, for example buffer over-
flow attacks. A major concern about the CTCP architec-
ture is that the additional processing may exert serious per-
formance cost on a CTCP router compared with a generic
IP router. Performance measurements on a working CTCP
router shows that the performance cost of the CTCP archi-
tecture is relatively modest. In fact, the throughput of a
Linux-based CTCP router can actually be higher than that
of a Linux-based IP router, because the former forces the
CPU to pay more attention to Linux’s network subsystem.

Our current algorithm for detecting buffer overflow at-
tacks is based on the assumption that some special patterns
(e.g. return address) will repeat in the attack payload. How-
ever, a patient attacker could bypass this detection method
by using attack payload that contains no more than 2 copies
of a special pattern. In the future we plan to remove this as-
sumption by applying run-time binary disassembly to sus-
picious packets. The honeypot in the current CTCP proto-
type cannot carry out a conversation with remote attackers
beyond the initial three-way hand-shake. We plan to im-
prove the honeypot so that it can interact with attackers in
the same way that the service it simulates does, all without
actually running the service daemon.

References

[1]  Fyodor, “The Art of Port Scanning,” 1997.

[2] Ofir  Arkin, “Network
http://www.publicom.co.il, 1999

Scanning  Techniques,”

[3] Fyodor, “Remote OS Detection via TCP/IP Stack Finger-
Printing,” http://www.insecure.org/nmap/nmap-
fingerprinting-article.html

[4] Orfin Arkin, “ ICMP usage in scanning,” http://www.sys-
security.com/html/projects/icmp.html.

[5] PoOf README, “POf
http://www.stearns.org/pOf/README.

README,”

[6] Jose Nazario, “Passive Fingerprinting using Network Client
Applications, Nov. 2000,
http://www.crimelabs.net/docs/passive.html

[71 Franck Veysset, Olivier Courtay, Olivier Heen, “New Tool
And Technique For Remote Operating System Fingerprint-
ing,” Intranode Software Technologies, April, 2002.

[8] Fyodor, “Exploit world! Master Index for ALL Exploits,
http://www.insecure.org/sploits_all.html

[9] http://www.securiteam.com/exploits/archive.html

[10] Prashant Pradhan, Tzi-cker Chiueh, Anindya Neogi, “Ag-
gregate TCP Congestion Control Using Multiple Network
Probing,” ICDCS 2000.



(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beat-
tie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton, “Stack-
Guard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks,” in Proceedings of 7th USENIX
Security Conference, San Antonio, Texas, Jan. 1998

Tzi-cker Chiueh and Fu-Hau Hsu, “RAD: A Compiler Time
Solution to Buffer Overflow Attacks,” Proceeding of ICDCS
2001, Arizon USA, April 2001

Nergal, “The Advanced Return-into-Lib(c) Exploits,” Vol-
ume 10, Issue 58, Phrack.

Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar, “Ad-
dress Obfuscation: An Efficient Approach to Combat a
Broad Range of Memory Error Exploits,” 12th USENIX Se-
curity Symposium, Washington, DC, August 2003.
Honeynet  Porject team, “
http://www.honeynet.org.

Honeynet  Project,”

Daniel P. Bovet, Marco Cesati, “Understanding the Linux
Kernel, 2nd edition,” O’Reilly , Dec 2002.

Permeo, “SOCKS
Overview,”  http://www.socks.permeo.com/AboutSOCKS/
SOCKSOverview.asp.

Mark Grennan, “Firewall and Proxy Server HOWTO,”
http://www.tldp.org/HOWTO/Firewall-
HOWTO.html#tocl1

Gopinath K. “N. Kernel Support for Building Network Fire-
walls Based on the Paradigm of Selective Inspection of
Packets at Applicatin Level,” Thesis, Indian Institute of
Technology, Kanpur April 1999.

Inferno Nettverk, “Dante,” http://www.inet.no/dante/.

Matthew Smart, G. Robert Malan, Farnam Jahanian, “De-
feating TCP/IP Stack Fingerprinting,” USENIX Security
Symposium, Aug. 2000.

Mark Handley, Vern Paxson, and Christian Kreibich, “Net-
work Intrusion Detection: Evasion, Traffic Normalization,
and End-to-End Protocol Semantics,” Proc. USENIX Secu-
rity Symposium 2001.

Trusted Information Systems, “TIS Firewall Toolkit,”
http://www.tis.com

Daniel Kiracofe, “Transparent Proxy with Linux and Squid
Mini-HOWTO,” http://en.tldp.org/ HOWTO/ Transparent-
Proxy.html.

A. Pasupulati, J. Coit, K. Levitt, S.F. Wu, S.H. Li,
R.C. Kuo, and K.P. Fan, “Buttercup: On Network-based
Detection of Polymorphic Buffer Overflow Vulnerabili-
ties,” Network Operations and Management Symposium
2004(NOMS 2004).

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

[39]

Stuart Staniford, Vern Paxson, Nicholas Weaver, “ How to
Own the Internet in Your Spare Time,” Proceedings of the
11th USENIX Security Symposium, 2002.

Nadav Har’El, “Bug in Nonlocal-bind (Transparent Proxy)
2.7 http://www.cs.helsinki.fi/linux/linux-kernel/2001-
22/0678.html.

Alexey Kuznetsov,“Re:Bug in Nonlocal-bind (Transparent
Proxy) 2
http://search.luky.org/linux-kernel.2001/msg32060.html.

Wolfgang Zekoll, “tcpproxy - Generic TCP/IP Proxy,”
http://www.quietsche-entchen.de/software/tcpproxy.html.

Thomas Toth, Christopher Kruegel, “Accurate Buffer Over-
flow Detection via Abstract Payload Execution,” Distributed
Systems Group, Technical University Vienna, Austria,
RAID 2002.

D. Ditzel and R. McLellan., “Register Allocation for Free:
The C Machine Stack Cache,” Proc. of the Symp. on Archi-
tectural Support for Programming Languages and Operating
Systems, pp. 48 - 56, March 1982.

Sangyeun Cho, Pen-Chung Yew, Gyungho Lee, “Decou-
pling local variable accesses in a wide-issue superscalar pro-
cessor,” Pro. of the 26th annual international symposium on
Computer architecture, Georgia, United States, 1999.

CERT, “CERT Advisory CA-2001-09 Sta-
tistical Weaknesses in TCP/IP Initial Sequence Numbers,”
http://www.cert.org/advisories/CA-2001-09.html

Laurent Joncheray, “Simple Active Attack Against TCP,”
5th USENIX UNIX Security Symposium, June 1995.

route—daemon9, “JUGGERNAUT,” Volume 7, Issue 50,
Phrack maganize.

Krauz’s, Pavel. "THUNT Project.” 1.5 - bug fix release. 30th
May 2000. URL: http://lin.fsid.cvut.cz/ kra/index.html(9th
February, 2001)

Embyte, “gspoof,” http://gspoof.sourceforge.net/

Sandeep Grover, “Buffer Overflow Attacks and Their Coun-
termeasures,” Linux Journal, March 10, 2003.

Deokjo Jeon,
Tools and Free Anti- tools with Recommendation,
http://www.sans.org/infosecFAQ/threats /Understand-
ing_ddos.htm.

“ Understanding DDoS Attacks,

s



