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Abstract

There is a large gap between the theory and practice
for random number generation. For example, on most
operating systems, using /dev/random to generate a
256-bit AES key is highly likely to produce a key with
no more than 160 bits of security. In this paper, we
propose solutions to many of the issues that real
software-based random number infrastructures have
encountered. Particularly, we demonstrate that
universal hash functions are a theoretically appealing
and efficient mechanism for accumulating entropy, we
show how to deal with forking processes without
using a two-phase commit, we explore better metrics
for estimating entropy and argue that systems should
provide both computational security and information
theoretic security through separate interfaces.

1. Introduction

Security-critical applications require ‘“random”
numbers. Unfortunately, there is no consensus on the
best way of obtaining such random numbers.
Moreover, there is not a consistent set of requirements
or terminology between different solutions.

Ultimately, we would like generators capable of
giving “true” random numbers, where all 2" possible
values for an n bit datum are equally likely from the
point of view of an adversary. l.e., we would like a
random number generator to provide information
theoretic security, where there is one bit of entropy per
bit of generator output.

In practice, that goal often isn’t feasible due to the
difficulty of harvesting high-entropy data. Instead, it is
common to take data that is believed to contain
enough entropy for cryptographic security, and use it
to “seed” a cryptographic pseudo-random number
generator, which is an algorithm that produces a stream
of values that one hopes, for all intents and purposes,
is indistinguishable from random to any attacker in
practice, even if a theoretical attack were possible,
given unbounded resources.

Conceptually, producing a pseudo-random stream
of numbers from a seed is a well-understood problem.

There are simple, efficient cryptographic constructions
that leak insignificant amounts of information about
the internal state, such as a block cipher run in CTR
(counter) mode. Nonetheless, there are numerous
practical pitfalls, even when one has a
cryptographically sound PRNG. Many of the concerns
have been addressed by other work. [15] and [6] both
look at the range of attacks that can be launched
against random number infrastructures.

Nonetheless, the currently deployed solutions are
unsatisfying. The more implementation-oriented
systems such as the /dev/random and /dev/urandom
devices on many modern operating systems often fail
to facilitate analysis, whereas research-oriented systems
tend to ignore some important practical requirements.

Having a secure source of random numbers is a
critical assumption of many protocols systems. There
have been several high profile failures in random
number systems leading to practical problems, such as
in the Netscape implementation of SSLv2[10] and a
more recent exploit where several online gambling
sites had shuffles that were easy to predict[1].

The scope of the problem was shown to be vast
when OpenSSL began checking to see whether a
seeding function had been called before using its
random number generator. The OpenSSL mailing list
was flooded with error reports from people with broken
software, and similarly with broken suggestions on
how to work around the solution. According to [11],
many users copy from the OpenSSL test harness, and
seed with the fixed value, “string to make the random
number generator think it has entropy”.

In the embedded space, the problem is even worse,
because there is often no access to cheap entropy.
Therefore, protocols involving session keys or other
data that needs to be random can be at great risk.

Additionally, there are a number of practical issues
that should be reconsidered in existing infrastructures.
For example, many systems provide only a PRNG,
not allowing for information theoretic security. Even
among the systems that do try to provide an “interface
to entropy”, they do not do it in a way that is secure in
the information-theoretic sense. For example, Linux’s
/dev/random implementation tries to make sure that



every bit of output contains one bit of entropy, but
turns out to have a flaw that makes it unsuitable for
producing 192-bit (or higher) AES keys. We discuss
this problem is section 6.

In this paper, we discuss a collection of “best
practices” for random number generation, many of
which are novel. Our recommendations are all
implemented in the EGADS random number
generation package.

2. Interfaces to Random Numbers

People tend to use pseudo-random numbers instead
of numbers that are secure in the information theoretic
sense (i.e., truly random numbers with entropy to an
attacker) only because pseudo-random numbers are
efficient to generate, whereas data with large amounts
of entropy tends to not be. One advantage of using
truly random numbers is that the difficulty of breaking
one random value (by, say, brute-force guessing) is
independent of breaking any other value. That is not
true with a cryptographic PRNG, where an attacker
with enough output can predict future outputs with a
probability of 1, assuming enough computational
resources. A good PRNG will provide computational
security, meaning that an adversary with realistic
resources should not be able to distinguish PRNG
output from truly random data. However, PRNGs are
incapable of providing information theoretic security in
the way that a one-time pad can.

We believe that the gap between information
theoretic security and computational security argues
that systems should not only provide an interface to
cryptographically secure pseudo-random numbers, they
should also provide an interface to numbers that are
believed to be truly random. Even though most
applications will not be willing to expend significant
resources to get truly random numbers, there are
occasions where it can be useful.

For example, there may be some high security data
where one would like to ensure that the compromise of
one piece of data does not lead to the compromise of
other pieces of data, such as long-term, high security
keys.

Another consideration is that a system may wish to
have more security than a pseudo-random number
generator has the strength to provide. For example, the
PRNGs provided by most operating systems use
cryptography that is based on a 128-bit symmetric
cipher or a 160-bit hash function, and thus can never
have more than 160 bits of security at any given time.
But, one may wish to generate a 256-bit symmetric
key, or a public key pair where 256-bit equivalent
security is desired.

Note that using two 128-bit PRNGs that are
independently seeded does not solve the problem, only
doubling an attackers workload, increasing security to
129 bits instead of the desired 256.

Many systems intertwine entropy harvesting and
pseudo-random number generation. Those that do not
still are generally only concerned with providing a
stream of pseudo-random numbers. However, we
believe that a good randomness infrastructure should
provide at least two interfaces, one that is fast and
cryptographically strong, and one where data that is
hopefully truly random, with one bit of entropy per bit
of output.

There are other types of interfaces that one may wish
to provide. Particularly, we see two other useful
concepts. First, one may wish to have truly random
data if it is available, but still be willing to fall back
on pseudo-random data to fill in the rest.

Second, there are times where the state of a pseudo-
random number generator need not be secret— it is
only important that the outputs be strongly collision
resistant. Particularly, the attacker who knows the
algorithm for generating outputs should not be able to
take a different internal state and be able to produce the
same output. This is the case when choosing session
IDs for TCP/IP[11], and can be the case when
choosing public object identifiers in systems like
COM. A cryptographic PRNG will do for these
purposes, except when there is not enough entropy
available. We prefer to look for other solutions to this
problem, as such an API is likely to be misused.

3. Basics

Randomness infrastructures will generally involve a
PRNG by necessity, and should always have a
component for harvesting entropy (we will refer to data
that has the chance of being truly random as entropy
because it is a convenient and common term, even if it
is a slight misusage in the information theoretic
sense).

Even if entropy is only used to seed a PRNG,
infrastructures should still harvest their own entropy,
because experience shows that pawning the
responsibility for entropy harvesting onto clients leads
to a large number of systems with inadequately seeded
PRNGs.

Entropy gathering should be a separate component
from the PRNG. This component is responsible for
producing outputs that are believed to be truly random.
We will refer to the entropy gather component as the
entropy harvester.

Entropy harvesters are responsible for collecting
data that may contain entropy, estimating how much
entropy has been collected, and turning that data into
outputs that are as close to truly random values as



feasible. The last requirement demands some sort of
cryptographic post-processing (often called whitening)
to try to distribute entropy evenly throughout output
values, and to otherwise try to remove any statistical
patterns that might have been lingering in the data.

Randomness infrastructures should be designed
with a particular threat model in mind. In order to
build a threat model, we must first understand the
types of attacks that one might try to launch against a
system.

At a high level, there are few vectors of attack.
First, there may be some way to guess the internal
state by observing the outputs (a cryptanalytic attack).
Hopefully, such an attack will only apply to a PRNG,
but can apply to an entropy harvester if data is
mishandled or entropy is overestimated. Second, an
attacker may have knowledge of sources that the
entropy collector polls. Third, an attacker may be able
to introduce malicious data into the entropy collector.
Finally, there may be some sort of side channel
allowing the attacker to read some or all of the internal
state of the generator. This may be a timing channel,
but it is more likely to be due to environmental
compromise unrelated to the generator. For example, if
an attacker can look at kernel memory, she may be able
to read the state of the entire randomness infrastructure
directly.

Generally, a threat model will assume that the
attacker cannot break strong cryptographic algorithms
with 80-100 bits of security, meaning that a good,
well-seeded PRNG makes the first class of attack
uninteresting. For the rest of the possible threats, one
should go through a common threat modeling exercise.
For example, one should determine whether to worry
about physical threats, such as van Eck attacks[16] and
shoulder surfing (both realistic physical attacks in
many circumstances). Also, one must figure out
whether other users on the same machine are a possible
threat.

Having a concrete threat model is especially
important in a randomness infrastructure, because one
needs to have a complete understanding of an attacker’s
capabilities in order to be able to estimate the amount
of entropy in data. That is, while most people think of
entropy as an absolute measure of how unknowable
data is, entropy is actually relative to a particular
observer. For example, before the winner of an
academy award is announced, the auditors who stuffed
the envelope know the result. Therefore, there is no
entropy in the envelope for them. Other people (such
as Hollywood insiders) may have access to polling
information, meaning that there may not be as much
entropy as possible in the envelope if, to the observer,
some possibilities are more likely than others. Of
course, there may be more entropy in the envelope for
the average viewer at home.

4. PRNG Design

The two major requirements for a PRNG are
efficiency, as one may wish to produce a large bulk of
numbers in a small amount of time, and security.
Particularly, one will wish to provide a particular level
of cryptographic security, where information leakage is
minimized.

The security requirement is best met with a well-
analyzed block cipher in CTR mode. Such a PRNG
will leak a mere one bit of information after producing
2" blocks of output, where n is the block size of the
cipher in bits (and assuming the key length is at least
as long as the block length).

One should prefer block ciphers in CTR mode to
generators based on a dedicated stream cipher. CTR
mode requires only that the block cipher be a pseudo-
random permutation [2], which is widely believed to
be a reasonable assumption. Dedicated stream ciphers,
on the other hand, need to be strong ciphers and also
need to resist related key attacks. For example, due to
a related key attack, the naive use of RC4 as a PRNG
is fundamentally flawed [8], even disregarding biases
in the cipher [9].

Cryptographic hash functions can also be a good
foundation for a PRNG. Many constructs have used
MDS5 or SHAL in this capacity, but the constructions
are often ad hoc. When using a hash function, we
would recommend HMAC in CTR mode (i.e., one
MACs counters for each successive output block).
Ultimately, we prefer the use of block ciphers, as they
are generally better-studied constructs.

Depending on the threat model, one may wish to
consider protected memory, which is difficult to
ensure. See [11] for a good discussion of the issues.

4.1 Reseeding a PRNG

There are two primary reasons why one might want
to reseed a pseudo-random number generator. First, the
generator may not contain as much entropy as is
desired, perhaps due to the system not having been
seeded yet, the entropy harvester being too liberal, or
due to environmental compromise. In these cases, one
would like to add additional entropy to the generator
state, while preserving any entropy that does exist in
the current state. The other case is to provide forward
secrecy. Consider an OS-based PRNG where the
operating system is compromised. A generator should
ensure that PRNG output requests that were fulfilled
prior to the compromise cannot feasibly be recovered
algorithmically from the current generator state.

The first type of reseed we call an external reseed,
whereas the second is called a self-reseed.

Let us consider the case where one is using AES-
128 in CTR mode as a PRNG. Reseeding the
generator must involve replacing the key with a new
value. Additionally, one should replace the value of



the counter with something unpredictable to the
attacker, because randomizing the counter can prevent
meet-in-the-middle attacks that would reduce the
effective strength of the PRNG to 64 bits.

For a self-reseed one can use the generator to output
256 bits of data, then use the first 128 bits to rekey the
cipher, and the second 128 bits to replace the counter
value. Rekeying the block cipher with its own output
is an effective one-way transformation assuming the
generator has the desired entropy. This technique was
first introduced in [12].

For an external reseed, one should combine new
seed material with the current generator state. An
external reseed can be identical to a self-reseed, except
that the seed would be XORed with the mixed
generator state. For example, if the seed is limited to
256 bits in length when using AES-128-CTR, one
may take 256 bits of generator output, XOR in the
new seed material, then rekey and replace the counter
block. If the generator has not previously been seeded,
one would simply pad the seed material to 256 bits,
then key and set the counter block.

We recommend the seed material be taken from an
entropy harvester. It should also be at least 100 bits.
We recommend a 256-bit seed for the initial seeding,
but subsequent seeds should be no more than 128 bits
in length, as additional entropy will generally be better
applied if it is saved for other applications.

If a seed is too long, it can be compressed with a
cryptographic hash function. However, the entropy
harvester should deal with this issue, as it should be
the entity responsible for producing whitened data
where the contents should be as close as random as
possible.

Self-reseeds should occur after each output request
so that forward secrecy can be maintained. That is, if a
client requests any amount of data, the generator
should provide it, and then reseed. Yarrow
recommended a configurable parameter for the amount
of output between self-reseeds. The single output
request can be considered atomic, but we see no reason
to ever accept multiple requests between reseeds,
because, with a well-selected PRNG, a reseed operation
is so cheap that there should never be an excuse not to
use it.

For example, if using AES in CTR mode as a
PRNG, reseeding would consist of incrementing and
encrypting a counter and then performing key
expansion on the result. As shown by timing data
from Helger Lipmaa,' freely available AES
implementations can perform the key expansion in
about 200 cycles on a Pentium III, which is a trivial
number. Based on Lipmaa’s data, the total cost should
never exceed 800 Pentium III cycles.

" http://www.tcs.hut.fi/~helger/aes/rijndael.html

Determining when to perform an external reseed is
more complicated. The goal of the external reseed is to
put the PRNG into a secure state. Once the PRNG is
likely to be in a secure state, one needs to determine
whether entropy is better spent increasing assurance
about the security of the PRNG state or serving clients
wanting information theoretic security.

Many systems, such as Yarrow[12] and Fortuna[7],
assume that all entropy in a system will be used to
seed a PRNG, and try to assume that the PRNG is
eventually secure.

Yarrow collects entropy in two pools, one that is
used to reseed the generator frequently, in hopes that
any compromise can be recovered from quickly once
the threat to the system is gone, and another that does
so rarely, saving up entropy over a long period of
time. The idea behind the slower reseed is that the
entropy estimators may be broken in some way, and it
should still be possible to recover eventually, if so.

Fortuna uses 32 entropy pools. Samples from any
given source are fed into the pools in a round robin
fashion. A reseed occurs when the first pool is long
enough. The first pool is always used to reseed the
generator. The second pool is also used every other
time. The third pool is additionally used every fourth
time, and so on. The Fortuna solution will eventually
put the system into a secure state. Fortuna is designed
not to have the ability to output entropy separately.
All entropy is fed into these pools, which are only
used to reseed a PRNG. Most general-purpose systems
will find this to be an unacceptable use of entropy.

The goal of the Fortuna design is to avoid entropy
estimation. One can simply specify a length at which
the first pool reseeds, and then the system will
eventually make it into a secure state. There is no way
of knowing when that will be without a good
estimator, particularly when some sources may be
tainted.

One cannot easily estimate whether the PRNG is
likely to be secure based on the number of reseeds. For
example, a single polluted source can feed enough
entropy to cause 100 reseeds before the first good
source adds any entropy to the first pool. If a polluted
source causes many reseeds, then it can ensure that the
first few pools always have small amounts of actual
entropy when they reseed, meaning that an attacker can
prevent the PRNG from reaching a secure state for a
long time. Nonetheless, Fortuna will eventually get
there.

Either Fortuna or Yarrow could be used when not
all entropy is fed to the PRNG infrastructure.
However, we still do not believe Fortuna to be a
practical system, because it uses its entropy way too
sparingly in order to avoid the need for entropy
estimators, and does not adequately protect against
short-term compromises due to the lack of entropy



estimators. In Section 5, we will discuss best practices
for entropy estimation.

We prefer the Yarrow approach, albeit with a
different set of metrics. Yarrow’s conservative reseeds
happen linearly. Every time two or more entropy
sources contribute more than 160 bits of entropy
towards a conservative reseed, that reseed occurs.

We believe that entropy metrics involving trust of
multiple sources are better placed inside the entropy
harvester. Additionally, conservative reseeds should
get more conservative over time.

The approach that we used in EGADS is similar to
Yarrow in that we take some of the entropy sent to the
PRNG and use it for fast reseeds in order to recover
from compromise quickly (we discuss this problem
more below). Occasionally (usually when we have
done a fast reseed within a small window of time, say
60 seconds), we take entropy fed to the PRNG and
feed it into a slow reseed pool, much like Yarrow.

The major difference is the metric for performing
the catastrophic reseed. The approach is far closer to
Fortuna, in that reseeds get more conservative on an
exponential scale. The reseed pool is used as the seed
to update the PRNG, but only after 2" updates of the
reseed pool, where n is the number of previous PRNG
reseeds that have occurred. Using this approach, one
would rely on entropy estimators in the harvesting
infrastructure to prevent Fortuna-like weaknesses.

Another approach that can be used in tandem for
recovering from environment compromise is to assume
that the administrator will reboot as a concluding step
in recovering from any attack. As a result, when
reseeding after machine startup, one should stretch to
find in any little shred of entropy that may be
available, including timestamps surrounding portions
of the boot process (even though on many systems,
this information is publicly leaked). Additionally, we
believe that one should always take the first 128 bits
of entropy gathered by the randomness infrastructure
(using an appropriate output threshold; see below) and
use it to reseed the PRNG as soon as possible.

This solution leave open a window after boot where
the system pseudo-random number generator is
potentially vulnerable to the attacker who originally
compromised the system. To avoid this problem, one
could have the PRNG block until the initial reseeding.
However, this seems impractical for most systems
(i.e., we believe it is a design decision that would
enrage many people who count on their PRNG to
never block). We believe a more realistic solution is to
leave this issue as an operational one. If the
administrator is worried about the problem, let her
boot in single user mode and ensure the generator is
well seeded before putting the machine back on a
network.

4.2 Dealing with fork()

A common error in application-level generators is
that PRNG state may be unintentionally duplicated as
the result of an operation such as fork (). If the
developer is fastidious when using fork(), the
following pseudo-C code solution will suffice in a
non-threaded program (it has a race condition in
threaded programs that one would have to ensure
cannot occur):

if ((pid = fork())) A
prng output seed();
} else {

prng reseed (prng output seed());
}

When forking, the parent discards the amount of
data it needs for a reseed. The child will take the exact
same data, and use it to reseed itself. Since the reseed
is effectively a one-way transformation, the
compromise of the child will not reveal the state of the
parent. For the reverse to be true, the parent should
also reseed itself after discarding the necessary data.

This solution works as long as the developer is
diligent, which can be particularly tough in a threaded
application. However, the PRNG implementer should
not expect the developer to be diligent. Instead, the
PRNG should detect forks and act appropriately when
they occur, reseeding before generating any output.

Reseeding in such a way that the parent and child
end up with different states where the output does not
risk being correlated easy is non-obvious.

Previously, [11] stated that using a database-style
two-phase commit was the only way to solve this
problem. Here is a much simpler solution, expressed
in the following pseudo-C code:
prng_output (numbytes) {

my pid = getpid();
time = time();
val = concatenate (my pid, time);
if (saved pid != my pid) {
seed = MAC (seed, ctr, val);
saved pid = my pid;
}
increment counter();
/* Assume that the counter is properly */
/* incremented after any blk cipher op . */
ret = ctr keystrm(seed, ctr, numbytes);
prng reseed();
return ret;
}

In the above code, we assume that we’re using a
block cipher in counter mode. If not, ctr can be
effectively ignored. We also assume a MAC that takes
three parameters, a key, a nonce and data to MAC. If
there is no nonce, then concatenate the second
parameter to the plaintext (or ignore it totally if not
using a block cipher in counter mode).

By MACing the current PID and mixing in the
time, we are effectively randomizing the seed in a way



that is unique to that child (the time is mixed in
because a child could eventually fork off a second
process with the same pid as an old process). Even if
we fork multiple children at the same time, they will
each end up with a different seed.

Once the parent finally reseeds (either by someone
requesting a PRNG output, by a timed reseed or by a
message from the child asking the parent to reseed),
the child PRNGs cannot be compromised as a result of
a compromise in the parent. To decrease the risk
involved with any such window of vulnerability, the
child can try to gather its own entropy and reseed itself
using that entropy.

4.3 The Initial Seeding Problem

One of the biggest practical problems for operating
system vendors is how to bootstrap a system-wide
PRNG. Generally, several processes that run early on a
machine need strong pseudo-random numbers. Once a
system-wide generator has reached a secure state a
single time, the system can maintain a seed file across
reboots (where a seed file would stash enough data to
reseed the PRNG using an algorithm such as the one
discussed earlier). As long as the seed file is properly
protected through operational means, and assuming no
fundamental flaws with the randomness infrastructure,
then this approach is sound.

However, it still leaves the question of obtaining
entropy the first time a machine boots. Developers of
random devices for common operating systems are yet
to address this problem. Instead, they generally ignore
the issue, allowing the PRNG to output without
sufficient entropy.

For desktop or server-based OSes, collecting
entropy during the install process addresses this
problem well, since most installs are interactive. We
recommend explicitly prompting the user to introduce
entropy into the system, such as by shaking a mouse
or pounding on a keyboard.

Getting that initial entropy can be a lot more
difficult in embedded devices. Under NDA, we have
heard horror stories of such devices rolling off the lines
with every device producing identical random
numbers, or highly correlated numbers. In this space,
one generally has far less opportunity to collect
entropy and is greatly concerned about manufacturing
cost.

Often, devices need to be individualized in order to
hold a unique secret key. In such a case, it should be
reasonable to generate a secure seed on another device
where entropy is readily available, and then put it into
devices at manufacture time (the individualized key
itself should be high entropy and can be used as a
PRNG seed itself). However, sometimes
individualizing a device at manufacture time is too
expensive.

For some devices, it may be possible to use a
similar trick when the device is first deployed. For
example, if a device has external buttons, the user
could be asked to push the buttons randomly until the
device beeps as a part of setup.

Often, such a trick will not be feasible. In such a
case, the device must necessarily try to do some
entropy collection on its own. Hardware solutions
exist, but increase costs.

If a pure software solution is an absolute
requirement, one is stuck trying to find the best
available entropy. Often, this is going to be whatever
clock is available. In such a device, it may be
reasonable to assume that mixing in tiny bits of
entropy as it becomes available is better than collecting
entropy until a threshold is reached, and then reseeding
all at once (which requires more overhead). Ongoing
compromise of the physical device (i.e., an iterative
attack on the system) is often not in the threat model,
in which case, both approaches will have the same end
effect. Executing on this assumption ensures that,
when a device finally does collect enough entropy to
be in a secure state, it will be in a secure state at its
earliest opportunity. Additionally, it helps protect the
seed used at time of manufacture.

5. Entropy Harvester Design

Design of a secure PRNG is a relatively
straightforward matter under the assumption that
occasionally there are external seeds available, where an
entropy harvester is responsible for assurance as to the
amount of entropy in those seeds.

All of the real challenges lie in building a good
entropy harvester. Such an infrastructure needs to
gather, compress and store data from its surrounding
environment that may contain entropy, estimate how
much entropy it is holding, whiten the entropy to
remove any lingering patterns and output high-entropy
data using metrics based on its estimates. All of these
things are a challenge in their own right, but it is also
important to do each of these things quickly.

One important design principle that should be
applied to entropy harvesting infrastructures is defense
in depth. In particular, if entropy harvester outputs turn
out not to be secure in the information theoretic sense,
then the system should be able to fall back to
computational security if at all possible. Data
whitening is using cryptography to remove statistical
correlations between bits, effectively spreading entropy
evenly throughout data. This is commonly done with
a cryptographic hash function, but can be done with a
block cipher. In fact, it should be a requirement of any
public random number interface, though is not
necessary when keying a cryptographic PRNG). Note
that the output of the hash function must be truncated
to a size that corresponds with the amount of entropy
believed to be in the input.



5.1 Accumulating and yielding entropy

In many systems, entropy samples may be
processed frequently, such as when there is a flurry of
activity on the machine. The developers of OS-level
PRNGs have strived to minimize the cost of
processing entropy samples. Generally, such generators
are only willing to keep fixed-size internal buffers.

Yarrow and Fortuna both recommend keeping one
or more cryptographic hash contexts. Most operating
systems have rejected this approach because they
believe it is too slow. We have done timing tests,
comparing the LFSR used to collect entropy in
Linux’s implementation of /dev/random to MDS5,
SHA1 and SHA256 contexts being used to process the
same samples. We also considered hash127[3], a non-
cryptographic hash function we will discuss below.

We measured the average time to process a 16-byte
sample, over 10,000 samples, using the fastest
implementations of the algorithms we could find.
Testing was done on a Pentium III. The results are
shown in Table 1.

Algorithm Speed (cycles per byte)
SHA256 116 cpb
SHA1 24.5 cpb
MDS5 18.4 cpb
Linux LFSR 13.3 cpb
Hash127 4.0 cpb

Table 1: P3 speed for entropy sample processing

Note that we did not consider initialization costs
for any of the above algorithms. SHA256, SHA1 and
MDS are significantly more expensive at startup than
the other two algorithms (by hundreds of cycles).
However, the Linux /dev/random implementation runs
a cryptographic hash function in its entirety over the
LFSR every time entropy is output. What OS
developers are more concerned with is minimizing the
overhead when entropy is being gathered, not when it
is being requested.

Clearly, the SHA256 implementation (the
recommended cryptographic hash function to use with
Fortuna) does not look like a good choice for speed-
critical environments.

While SHA1 and MDS5 are slower than the current
Linux solution, they do have the advantage that they
are believed to be functions that are, for the most part,
entropy preserving. That is, if one puts data of an
arbitrary length containing 128 bits of entropy into a
SHAT1 context, the 160-bit output should have nearly
128 bits of entropy. If that property does not hold,
then the cryptographic hash function is not doing its
job. Currently, SHA1 is higher assurance than MDS5,
due to collisions found in the MDS5 compression
function. However, both have been better analyzed for
their ability to preserve entropy than has the non-
cryptographic LFSR used by Linux.

A cryptographic hash function is certainly not
necessary for entropy accumulation. However, any
good function must be mostly entropy preserving,
even if the attacker controls part of the input. Another
possibility not considered in previous systems is to
use a good universal hash function[18], which would
allow one to bound the probability of significant
entropy loss to something miniscule, under the
assumption that the input contains enough entropy.

The hash function we examined, hash127 consists
of multiplications in the Galois Field of 2'*-1, which
are trivial to implement. The reference implementation
is incredibly fast due to several performance tricks, the
most effective involving precomputation. The overhead
of the precomputation should be acceptable for any
desktop OS (particularly since the amount of
precomputation performed can be reduced arbitrarily, if
necessary, trading off a bit of speed). We estimate that
a well-optimized version that uses no precomputation
would run, at worst, 100% slower than the hash127
reference implementation, which is still significantly
faster than the Linux solution, where there is no
concrete analysis on entropy loss during compression.
See [14] for a more detailed discussion of software
performance for this class of hash functions.

There are some considerations in using a universal
hash function in this role. First, hash127 and its ilk
are keyed hash functions, meaning that a key
(traditionally secret) is used as part of the computation.
The more entropy in the key, the better (though one is
protected if the inputs contain the estimated amount of
entropy). If one has a cryptographic PRNG that was
seeded with some amount of entropy, then the hash
function should be keyed with output from that PRNG
(and periodically rekeyin as the PRNG reseeds is a fine
idea). Otherwise, the function should be keyed with
any available entropy (e.g., the system clock). The
output of the hash function should be used to key a
cryptographic PRNG that will be used in keying any
future hash contexts.

Second, as is the case with the Linux LFSR, the
output of a universal hash function should never be
exposed directly to an untrusted user. To prevent any
sort of correlation attack, the output must be passed
through a pseudo-random (whitening) function. Post-
processing hash127 outputs with AES is quicker than
using either SHA1 or MD5 due to the fixed-cost
overhead of those two algorithms.

If using AES in counter mode for a PRNG, one
could reuse the PRNG’s keyed AES context. However,
to prevent theoretical reductions in strength, one
should ensure that inputs from the hash function and
counter blocks cannot collide.

When using hash127, this is easily done. That hash
function produces a 128-bit output, but the 97" bit is
always set to 1 (hash127’s output can never hold more
than 127 bits of entropy). One simply must fix the



corresponding bit of the PRNG counter block to 0.
This must even be done after replacing the counter
block with a random value (such as when reseeding the
PRNG).

Note that you can also use cryptographic stream
ciphers to postprocess universal hash functions, which
is useful when using such a construct as the system
PRNG. In such a situation, the postprocessing is done
by taking a value of sufficient size from the generator,
and then using it in a way dictated by the nature of the
hash function. For example, when using hash127, the
value would be added to the hash result modulo 2'-1.

After applying cryptographic post-processing to any
sort of entropy “pool” (accumulator), one must truncate
the result to the number of bits of entropy that was
believed to be in the pool (securely discarding the
truncated portion). We recommend slicing off an
additional bit to account for the loss that one should
expect from the cryptographic post-processing.

For example, one might use hash127 to collect an
estimated 121 bits of entropy at a time (where the
estimate is believed to be sufficiently conservative
against any threat in the threat model), AES-encrypt
the result, then ignore one byte of the AES output.

5.2 Entropy estimation

Perhaps the biggest shortcoming in most practical
random number generation systems is the lack of
quality entropy estimation. For example, EGD, a
popular user-space daemon for harvesting entropy
estimates .1 bits of entropy per byte of output any
time it calls the ps command. That means a 6,000
byte ps output will be estimated to have 600 bits of
entropy. We have found through empirical testing that
this is a gross overestimate. Even if the threat model is
that an attacker got to see the ps output a single time,
and then must guess any changes based on external
behavior, we’ve seen many situations where the an
output of that size would contain no more than two
bits of entropy. Particularly, machines without
interactive users often have a fairly fixed set of
processes, and the information about those processes
that the command displays tends to change slowly.
The only thing that changes frequently is CPU time
elapsed, which tends to grow at an easily predictable
rate.

Of course, from the point of view of a remote
attacker who must guess the state of the entire process
table, there may be a bit more entropy. It’s difficult to
say how much, because an attacker might be able to
make incredibly educated guesses about the state of a
system, particularly considering that the nmap tool can
often give the system uptime of a remote host
(depending on the operating system and the firewall
configuration of the host being targeted). In short, if
we were only concerned about collecting data that
contains entropy with respect to remote attackers, we

might be inclined to assume some amount of entropy
per process (probably a fraction of a bit). Certainly, we
would not expect to gain much additional entropy as
time goes on (and, any additional entropy is likely to
come primarily from new processed being added and
possibly old processes going away—entropy is not as
likely to appear in the output simply from old
processes continuing to exist).

When considering threat models where local users
are a threat, one must consider the risk of an attacker
measuring the same data as the process that does
entropy gathering. Even if the entropy gathering is
done in-kernel, the end user can often make
measurements that can help reveal data that is generally
expected to be private to the kernel. For example, an
OS that measures timestamps associated with
keystrokes may be able to hide key press information
between users, but the same user should be able to add
her own keystrokes, which the operating system will
generally assume is entropy. Unfortunately, the
attacker can generally collect timestamps in user space
associated with those keystrokes that are highly
correlated with the timestamps of the kernel.

One general principle for entropy gathering that is
widely practices is mixing a timestamp into the
entropy accumulator when adding a sample. This
seems like it would be an effective measure, especially
considering the high-resolution timers available on
modern architectures, which tend to be tied to the
clock speed of the processor. However, the end user
generally does not see anywhere near the maximum
resolution from a timer, because most events will be
regulated by the bus clock, which is generally much
slower than the processor clock. Making matters
worse, peripheral clocks tend to be even slower still.
For example, keyboards and mice generally use a
1KHz clock, a far cry from the 3 GHz clock available
on some x86 processors. As a result, when estimating
entropy from a source, we recommend assuming that
the associated timestamp has no better granularity than
that of the slowest clock to which the entropy sample
may be tied.

A related issue is a “back-to-back” attack where,
depending on the details of entropy events, an attacker
may be able to force events to happen at particular
moments. For example, back-to-back short network
packets can keep a machine from processing keyboard
or mouse interrupts until the time when it is done
servicing a packet, which a remote attacker can measure
by observing the change in response in the packets he
sends. In this particular situation, one can thwart the
problem by assuming there is no entropy when the
delta between two events is close to the interrupt
latency time. This works because both network packets
and keystrokes cause interrupts.”

> Some OSes can mitigate this problem if supported by the
network card.



One significant problem is a lack of methodology
for deriving reasonable estimates. The most practical
methodology to date has been Yarrow’s approach,
which consists of applying three estimators to each
input sample, and choosing the lowest estimate. The
first is a programmer driven estimate. The
methodology with which the programmer should
derive such estimates is unspecified. The second
estimator is a statistical estimator that “is geared
towards detecting abnormal situations in which the
samples have very low entropy”. Again, the
methodology for deriving such estimators is
unspecified, and this estimator is not clearly
differentiated from the first. The third estimator is
multiplying the input length of a sample by a fixed
system-wide value. The recommended value is 0.5. No
justification for this value is given.

Information theory does provide ways to measure
entropy, but they are not practical, because one can
only model how much entropy is in data if one has a
complete understanding of how the data is produced
and all possible channels an attacker may use to
measure information about the data. Considering that
there are a broad range of possible threat models, and
considering that machines behave deterministically yet
are still incredibly complex in practice, one should
expect data to tend to be predictable (the only times
where significant new entropy can really added be to a
system are when the machine receives external input),
yet it is incredibly difficult to figure out just how
predictable.

The most useful way to think about the maximum
entropy that data can have is by looking at how much
the ordered samples could be compressed (this value is
clearly an upper bound on the amount of entropy in a
piece of data).

[11] discusses how to use a general-purpose
compression function for getting an upper bound on
the amount of entropy in the data. Essentially, one
compresses the first sample padded out to the internal
block length of the compression function. Then, one
compresses subsequent samples, and measures the
upper bound on the entropy in the second sample by
looking at the compressed size of that sample. The
first sample is never credited for any entropy (at least,
not through compression-based techniques).

The problem with this approach is that “general
purpose” compression functions are not optimized for
compressing specific types of data. Hand-tailored
compression functions can generally do better.

We recommend one builds hand-tailored
compression functions, and then attempting further
compression on the output of the hand-tailored output
by using a conventional compression algorithm. If the
compression output does not usually grow, then the
hand-tailored algorithm is clearly poor, but the
combined algorithm is better.

When combining compression algorithms, the
upper bound on entropy is the minimum compressed
size of the sample at any point in the process. In
practice, one should assume that smarter compression
could do a better job, even with a hand-tailored
compression function.

Our recommendation is that one should try to find
as compact a representation as possible for expressing
the differences between any two successive samples.
This type of compression function does not take into
account long-term trends on data. However, if one
finds an optimal function of this type, it is rare that
one will see better than a 50% improvement in
compression rates by using long-term information.
Also, when longer-term patterns would produce
massive improvements in compression, it is likely to
be obvious to the person writing the compression
function. When building such a compression function,
one should conservatively assume that data that
changes predictably (such as CPU time in the output
of ps) is constant. Additionally, one should ignore any
data that an attacker might be able to measure
(assuming a particular threat model).

With any compression function that one uses that
seems to give good results, we recommend
conservatively dividing the entropy estimates derived
from such a function by four. This helps hedge against
the existence of better compression algorithms as well
as the presence of unanticipated channels of attack.

The next question that arises is whether entropy
measurement should be done “on the fly”, or whether a
static estimator should be used.

While dynamic estimators certainly have more
overhead, there is a big danger in a static estimator, in
that one may end up with entropy samples that have
less entropy than the estimate. For example, no matter
what estimate one were to derive for keyboard entropy,
it would not be low enough for the case when a key is
being held down (assuming a highly conservative
threat model).

FIPS-style statistical tests (see Section 5.4) provide
a solution, but such tests are not satisfying because
they are easily fooled. One option is to derive a set of
conditions where the estimate used is believed to be
too liberal, and then detect those conditions,
estimating no entropy for them. For example, one
might fail to credit entropy any time the same key is
pressed twice in a row, or any time an interrupt-based
event occurs back-to-back with another such event.

Another thing we recommend is to set a maximum
entropy estimate per sample for any given source. We
recommend examining a source in a variety of
operational environments and calculating a median
compression rate, then basing a maximum off that
value (for example, divide by four).

These guidelines should lead to per-source entropy
estimators that are reasonable if a high-quality



compression function is found and if the channels over
which an attacker might get data are well understood.
We would recommend this approach over the more
ambiguous guidelines required by Yarrow.

A per-source, per-sample maximum that is carefully
calculated seems more appropriate than a Yarrow-like
global factor based on the length of the input.
Otherwise, the spirit of the Yarrow estimators is
present in the above recommendations.

5.3 Metrics for yielding entropy

Even if all entropy estimators in an entropy
harvesting system are believed to be adequately
pessimistic under a particular threat model, a good
conservative approach would assume that at least one
entropy source has an unanticipated side channel. This
was first done in Yarrow, where a catastrophic reseed
occurred when the appropriate entropy pool had built
up at least 160 bits of entropy from k different sources,
where k was expected to be two in practice.

Such an approach was only used for catastrophic
reseeds. We feel that a similar approach should be used
for any entropy harvester output, even if not being
used for catastrophic reseed, since the goal of an
entropy harvester is to provide information theoretic
security.

However, the Yarrow metric is somewhat wasteful
in this capacity, in that it eats at least 320 bits of
entropy to produce a single 160-bit output, and will
often eat quite a bit more, particularly when there is a
single, fast source (the metric is more appropriate for
the context in which it is used).

We believe more liberal metrics are appropriate,
particularly because previous designs favored by
implementers, such as the Linux design, are widely
believed to do a good enough job in practice. We have
heard no reports of someone breaking the Linux
system by polluting an entropy source (either
/dev/random or /dev/urandom). Considering that
such a design seems to be good enough, if entropy
outputs are a requirement of a system, then a Fortuna-
style design seems like overkill (particularly when a
fast, polluted source can stall a secure PRNG seed for
quite a long time).

There are plenty of more liberal metrics that can be
more effective. One example would be, for an n-bit
accumulator, to mark as ready for output when it
contains an estimated n bits of entropy, disregarding
the contributions of the fastest k entropy sources
(where k will generally be 1 in most practical
systems).

In such a scenario, any single source would stop
adding entropy to a particular accumulator after
contributing n bits. The source could then move on to
another accumulator (when all accumulators are full,

one should be emptied into the PRNG, as discussed
above).

A more liberal metric still is possible if one is
willing to fall back on the computational security
provided by the whitening process. For example, let us
assume that n=128 bits. A metric could be that, either
the accumulator has 128 bits of entropy ignoring the
most prolific source, or that at least two sources have
contributed 64 bits of entropy. In this way, the system
should approximate information theoretic security,
unless one of the sources is tainted, in which case the
64 bits of entropy should still provide reasonable
protection in practice.

Other metrics can be designed that are tailored to
the needs of a particular environment. One might
assign trust rankings to each source, and output when
the entropy buffer achieves a particular level of trust.
That way, a fast, trusted source (such as a hardware
pseudo-random number generator) can still be used to
generate entropy outputs quickly. Or, one could
simply grant an exception to trusted sources.

Another issue in entropy estimation that has never
been addressed previously is the possibility of partially
tainted sources on multi-user machines. For example,
on a multi-user system, measuring entropy for
keyboard interrupts can be partially tainted if there is a
single malicious user. If multiple sources can be
tainted in this way at the same time, the above metrics
can easily fail.

One could solve this problem by keeping track of
each entropy source on a per-user basis, treating each as
a logical source. However, that technique has the
problem in practice that it requires dynamic allocation
of entropy estimation information, which may
conceivably pose a problem.

5.4 Other Considerations

Much like a PRNG, an entropy infrastructure
should be able to provide forward secrecy in the case of
environmental compromise. Such a goal is easily
achieved by zeroing out entropy accumulators securely
after they are used for output. This can also help ensure
that outputs derived from the same accumulator are
sufficiently independent that information-theoretic
security levels can still be approximated, which is
particularly important when using an accumulator
without theoretically proven bounds for entropy loss
(such as the construct used with Linux’ /dev/random).

Besides the Linux solution not having provable
information theoretic security, its methodology of
hashing its entropy pool to get (hopefully) entropic
output, stirring the pool and then reducing the entropy
estimate by the number of bytes output is a waste from
the perspective of cryptographic security, since there
are constructs where information leakage is both
miniscule and well bounded.



Recovering from an environmental attack is
somewhat more problematic. If computational security
is an acceptable fallback for outputs, then the
whitening process can involve PRNG output, so that
once the PRNG returns to a computationally secure
state, entropy harvester outputs will do so as well. For
example, one might take a 128-bit key from the PRNG
and then encrypt a 128-bit accumulator using that key
before outputting.

If computational security is not a desirable fallback,
then we recommend assuming that a machine will be
rebooted after recovering from a compromise, and then
being sure not to save the state of entropy
accumulators across a reboot (instead, we would mix
the accumulators into the PRNG state before shutting
down).

FIPS 140-1 tests[21] are worthwhile to perform in
an entropy harvester, despite the fact that there may be
low-entropy output streams they will not fail. Such
tests should be applied to the output of each source, in
the hopes of detecting when the source has a
catastrophic failure. If they do not pose significant
overhead, we recommend one run them continuously
on compressed entropy streams before they are placed
in an accumulation buffer (at that point, the FIPS tests
are unlikely to be overly useful). Otherwise, one
should run them whenever cycles to do so are
available.

As with PRNGs, the memory used to hold all the
state of an entropy harvester should be protected using
the best available means.

Timing and power-based side channels can be
extremely difficult to avoid, considering the wide
disparity in entropy sources (in the rest of the
infrastructure, it should be fairly simple to avoid
conditional branches and loops of indefinite size).
Such problems argue for using a general-purpose
compression function that may be less accurate, but
also less susceptible to side channel attacks. This area
is in need of additional research.

For user-space entropy accumulators, the PRNG

fork () issue also applies to entropy accumulators.
Here, the state problem is easy to solve, as the child
should simply zero out all of its entropy buffers.
However, one should note that there is significant risk
of parent and child measuring redundant entropy, in
which case estimates may be significantly off. This
argues for system-wide entropy accumulators.
In the situation where a user-space collector is believed
to be higher assurance than an existing kernel-based
generator, then the user-space generator should be sure
to estimate under the assumption that the kernel
generator is leaking significant amounts of information
as to the date that the user-space collector is gathering.

6. Related Work

Traditionally, design of randomness architectures

focused on the PRNG, and not the collection and
management of entropy. Many systems exist where the
PRNG itself is cryptographically strong (or is believed
to be), where the responsibility for providing a secure
seed is left to the client of the PRNG, including the
ANSI X9.17 PRNG[20] and the Blum-Blum-Shub
generator[4], which is based on public key
cryptography, but is no more secure and is far slower
in practice than PRNGs based on a block cipher in
CTR mode (both constructs are provably secure to
good bounds with reasonable assumptions). Even [9],
which recognizes the fundamental difference between
information theoretic security and computational
security, assumes that clients will only ever want
computational security. Even so, it misses PRNG
requirements we believe to be important, such as
forward secrecy. Yarrow[12] and Fortuna[7] are the
only published PRNGs to recognize forward secrecy as
a requirement.

[6] famously discusses ways to harvest entropy, and
explicitly talks about stretching random numbers with
a pseudo-random number generator when “true”
random numbers cannot be obtained quickly enough.
[11] discusses specific considerations in polling for
entropy and discusses using compression for entropy
estimation, but totally ignores conservative Yarrow-
style metrics. [17] analyzes common sources for
entropy in software, and provides lower-bound metrics
that are probably suitably conservative for general-
purpose operating systems.

The original Linux infrastructure for /dev/random
and /dev/urandom was the first interface to separate
the notion of high-assurance randomness (i.e., data
obtained from /dev/random) and random data that
may not be secure (but generally is in practice; the
/dev/random interface). The original system worked
by pooling entropy in a LFSR, and estimating the
number of bits in that LFSR. When output was
requested, the pool was “stirred” (the LFSR is clocked)
and then hashed with MD5, which was used for up to
128 bits of output, then 128 was subtracted from the
entropy count of the pool. If output was requested over
the /dev/random interface, yet not enough entropy
was estimated to be in the pool, then output blocked
until that condition was true.

This general system persists to this day (though it
has evolved a bit, even incorporating a Yarrow-inspired
slow pool), and has been widely copied, with minor
modifications. Unfortunately, while it might seem to
give information theoretic security due to limiting
output to the amount of entropy believed to be in the
pool, it does not do so, because subsequent outputs are



not generated using independent entropy. The same
piece of data is rotated and rehashed each time, until
the entropy estimate reaches zero. As a result, if an
attacker could invert the hash function, then she could
calculate the next output with high probability by
rotating the pool and rehashing. The only time this
would fail is if new entropy gets added to the pool in
the meantime.

One consequence of this design is that the
/dev/random device is not suitable for producing keys
larger than the output size of the hash function used
internally, as the only case where such a key could
possibly have more than 160 bits of entropy would be
when enough new entropy got added to the pool in-
between blocks of output.

Because /dev/random on Linux does not provide
information theoretic security, we see no reason to use
it compared to /dev/urandom, as long as one can
ensure that the entropy pool has ever received a
minimum amount of entropy. The entropy loss
through /dev/urandom is miniscule, and therefore
there is no good reason to ever block for more entropy
if information-theoretic levels of security cannot be
ensured.

In the original Linux random number infrastructure,
malicious applications could starve /dev/random by
continually reading from /dev/urandom. Of course,
malicious applications could also try to read
continually from /dev/random. A partial solution to
that problem is to provide data on the /dev/random
interface in a round-robin manner in fixed-size
increments. This way, legitimate users will eventually
get served.

There are other problems with this infrastructure.
For example /dev/random output bits are not
necessarily likely to be secure in the information-
theoretic sense, partially due to the lack of proofs
attached to the LFSR and partially due to the fact that
the LFSR is not zeroed out after each output. Also,
the way /dev/random was designed made it difficult to
analyze. The LFSR appears to be a reasonable
construct for accumulating entropy, but it may not be.

Yarrow is criticized for being too complex and
under-specified, particularly with regard to its entropy
handling. Several implementations intended for
deployment have been so slow to provide an initial
seed that they were shelved.

Fortuna is even more reticent to use its entropy
effectively, and completely foregoes entropy
estimation, which we believe is theoretically
appealing, but a drawback in practice. Neither Fortuna
nor Yarrow allow for an interface to data with

information-theoretic security levels.

The ideas presented in this paper are implemented
in the EGADS software package. This work extends a
previous, unpublished algorithm called Tiny,
developed in conjunction with John Kelsey.
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