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Abstract

In a password-based authentication system, to au-
thenticate a user, a server typically stores password ver-
ification data (PVD), which is a value derived from the
user’s password using publicly known functions. For those
users whose passwords fall within an attacker’s dictio-
nary, their PVDs, if stolen (for example, through server
compromise), will allow the attacker to mount off-line dic-
tionary attacks. In this article, we describe a password
authentication system that can tolerate server compro-
mises. The described system uses multiple (say n) servers
to share password verification data and never recon-
structs the shared PVD during user authentications. Only
a threshold number (say ¢, t < n) of these servers are re-
quired for a user authentication and compromising
up to (¢t — 1) of these servers will not allow an at-
tacker to mount off-line dictionary attacks, even if a user’s
password falls within the attacker’s dictionary. The de-
scribed system can still function if some of the servers
are unavailable. In this paper, we give the system archi-
tecture and implementation details. Our experimental re-
sults show that the described system works well. The given
system can be used to build intrusion-tolerant applica-
tions.

Keywords: Intrusion tolerance, off-line dictionary at-
tack, password-authenticated key exchange (PAKE)

1. Introduction

Passwords are widely used for authentication. In
a password-based authentication system, a user (also
called client hereinafter) holds a memorizable pass-
word and a server stores related password-verification data
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(PVD). PVD is a value derived from the password us-
ing publicly known functions and is used by the server
for client authentication. For example, in most Unix sys-
tems, PVD is the hash of user ID, a salt, and the user’s pass-
word. Password-based systems are notoriously vulnerable
to the dictionary attack, in which an attacker does not ex-
haust all possible passwords but works on a smaller dictio-
nary of likely passwords for password searching. It should
be noted that for a specific user, his password might not al-
ways fall within an attacker’s dictionary but a high frac-
tion of the actual passwords may match passwords of
a carefully constructed dictionary, even when a proac-
tive password checking program is used*. Wu [31] has
demonstrated that, in a Kerberos system where a proac-
tive password checker is used, about 8% (2045 out of
25,000) of the passwords are still vulnerable to dictio-
nary attacks.

With a password, the client can use two different modes
to authenticate himself to the server. First, he can simply
send his password to the server, which applies the related
PVD to check the validity of the received password. For se-
curity reasons, the password should be encrypted before it
is transferred. Most password-based authentication systems
on the web employ this mode: a Secure Socket Layer (SSL)
connection is established first between the client and the
server and then a password is sent to the server via the SSL
connection for client-side authentication. Since each SSL
session establishes a random session key by which the pass-
word is encrypted, if an attacker eavesdrops the encrypted
password, he will not be able to replay it or decrypt it. Nei-
ther can he use the encrypted password to mount an off-line
dictionary attack, as the encrypting SSL session key is ran-
dom. Throughout this article, this type of authentication is

+  Most proactive password checkers use well-defined rules for password
checking [31] and an attacker could construct a better password dic-
tionary so that some passwords may escape the proactive password
checking but still fall within the attacker’s dictionary. Interested read-
ers can read [31] for methods to construct such a password dictionary.



called secure password transfer. We stress that in this mode
the server stores PVD for password verification.

The second mode for client-side authentication is to
demonstrate the possession of the password without send-
ing it. The password-based challenge/response authentica-
tion system [21] falls into this mode: a client authenticates
himself by computing a response using his password and
a challenge chosen by the server. It is this computed re-
sponse, not the password, that is sent back to the server.
However, the password-based challenge/response system is
still not secure since an attacker can eavesdrop a (challenge,
response) pair and use them to mount off-line dictionary at-
tacks. A new protocol paradigm following this path, called
password-authenticated key exchange (PAKE), was devel-
oped [3]. In PAKE, user’s password is not transferred at
all and instead, the client authentication is accomplished
through the capability of establishing an authenticated ses-
sion key' with the server, who stores the related PVD. This
authenticated session key would not be possible if the client
does not have the password or the server does not have
the related PVD. A good PAKE protocol is secure against
both the eavesdropping-based dictionary attack and any ac-
tive attacks. PAKE protocols achieve these security goals
through the marriage with public key exchange techniques.
To date, several PAKE protocols have been proposed, in-
cluding the Encrypted Key Exchange (EKE) [3, 4], Secure
Password Exponential Key Exchange (SPEKE) [18, 17],
Simple Remote Password (SRP) [30], the PAK protocol [5],
the BPROO protocol [1], the SNAPI protocol [23], and the
KOYO01 protocol [20]. The SPEKE, SRP, PAK and KOY01
protocols use the Diffie-Hellman key exchange algorithm
[12] while BPROO and SNAPI use the RSA algorithm [27].
We stress three facts about PAKE: 1) a PAKE user possesses
a password only; 2) the client program used by the user to
log into the system has only system parameters (such as the
g and ¢ for Diffie-Hellman) and no secrets (say, a private
key) are hard coded into it. Thus, an attacker cannot com-
promise PAKE security by obtaining a copy of the client
program and examining it; 3) the client program should be
reliable in that its code is not corrupted. (Otherwise, a cor-
rupted client program can simply keep a copy of the pass-
word typed by the user and send it to the attacker.)

THE PROBLEM. Both the secure password transfer ap-
proach and the PAKE approach address off-line dictionary
attacks from the network very well. However, the secure
password transfer approach and most of the existing PAKE
protocols use a single server to store users’ PVD. Recall
that PVD is derived from passwords using a publicly known
function. This makes them vulnerable to another type of off-
line dictionary attack: for those passwords that fall within an

1 This authenticated session key is cryptographically strong and can be
used to protect subsequent communications after the authentication.

attacker’s dictionary (such as the 2045 passwords out of the
25,000 reported in [31]). If the attacker managed to com-
promise the centralized server and steal the PVD, he could
simply guess a password (from his dictionary), compute the
corresponding PVD (using the publicly known function)
and verify the correctness of the password by comparing
the computed PVD against the stolen PVD. On the other
hand, server exposure seems inevitable. For instance, an at-
tacker might gain the r oot privilege of the server by ex-
ploiting bugs in server software (for instance, bug [9] in
the Apache web server, and bug [8] in Kerberos server).
It should be noted that simply applying a threshold secret
sharing scheme (such as the Shamir secret sharing) over
PVD does not solve the problem since the shared secret
(i.e., the PVD) is reconstructed when used, which still al-
lows an attacker to mount an off-line dictionary attack if the
reconstruction point is compromised.

OUR CONTRIBUTION. In this article, we de-
scribe an intrusion-tolerant password authentication sys-
tem. This system employs multiple (say n) servers —
called PVD servers — to store PVD. Among the multi-
ple PVD servers a user’s PVD is shared and the shared PVD
is never reconstructed during user authentication. The de-
scribed system is intrusion-tolerant in the sense that
compromising up to (¢t — 1), 2 < ¢t < n, servers will not al-
low the attacker to mount off-line dictionary attacks and the
system can still function if (n — ¢) servers go down. We ex-
plore the architecture and implementation details of the
intrusion-tolerant system. Our experimental results show
that the described system works well. One example appli-
cation of our described system is to enhance the security
of the web applications that use password-based authenti-
cation. Other password-based applications such as Tel net
and FTP can also be made intrusion-tolerant by integrat-
ing the described system.

This article is organized as follows. Section 2 gives the
related work and Section 3 presents the system architec-
ture. Section 4 describes the system setup procedure and
Section 5 gives the data flow among the system compo-
nents. In Section 6, we describe the implementation details
of the intrusion-tolerant authentication system, give some
performance data and present methods to improve the per-
formance. Section 7 discusses some operational issues and
Section 8 explores how the described system might be used
to build intrusion-tolerant applications. Concluding remarks
are given in Section 9.

2. Related Work

For trusted third party (TTP)-based authentication sys-
tems such as Kerberos, Gong [15] gave techniques to add
intrusion tolerance to the trusted third party. The intrusion-



tolerant password authentication system described in this
article is not based on any trusted third party.

MacKenzie et al. [24] proposed the first threshold PAKE
protocol (called M8J02 hereinafter), which uses multiple
servers to share PVD and is provably secure under the ran-
dom oracle model [2, 7]. Di Raimondo and Gennaro [10]
gave another provably secure (under the standard assump-
tion model) threshold PAKE protocol (called DA03 here-
inafter), which is built on the KOY01 PAKE protocol [20].
(The KOY01 PAKE protocol provides provable security (un-
der the standard assumption model) but it uses a single
server to store PVD and the DR03 protocol enhances it by
using multiple servers.) Both the M3J02 protocol and the
D@03 protocols are theoretically significant in that they pro-
vide provable security (under different security models).
However, they are relatively inefficient due to their com-
plexity. For example, the DG03 protocol uses one-time dig-
ital signature as building block. Since one-time digital sig-
natures are typically inefficient, this makes D03 inefficient
in communication. (For instance, if the modulus p is 1024
bit and the Merkle one-time digital signature scheme is used
in KOY01 and D&03, both the one-time verification key and
the one-time digital signature on (5’| K) will be 20 kilo-
bytes, which is pretty big for a password-based authenti-
cation.) We believe that, for a password-based authentica-
tion system, both security and efficiency are important. In
contrast, the intrusion-tolerant password authentication sys-
tem described here uses a different model first proposed in
[29]. In this model, the assumption on the client program is
further weakened and, besides (g1, g2, N, ¢), an additional
public value, 5 = ¢19, is also hard coded into the client pro-
gram and 5~ is shared among the multiple PVD servers.
This change makes it much easier for us to achieve intru-
sion tolerance on the server side. We like to stress that, in
our intrusion-tolerant system, the client program has no se-
cret hard coded into it and that the client program can be
examined by attackers without losing security. Compared
to [29], the protocol used in the described system is simi-
lar but more scalable, which we shall elaborate later.

3. System Architecture

Depicted in Figure 1 is the architecture for the intrusion-
tolerant password authentication system. There are four
components in the system: the client program, the ser-
vice server interface, the PVD servers and the management
server. The client program runs at the client side. It accepts
user name and password, connects to the service server as
requested, performs a PAKE authentication on the user’s be-
half to the service server and establishes an authenticated
(cryptographically) strong session key to protect subsequent
communication between the client and the service server.
There is no secret hard coded in the client program and the

client program erases the user’s password from memory im-
mediately after the successful login. The service server in-
terface runs on the service server such as Tel net, FTP and
web server. It is activated when a user login request is re-
ceived and it then connects to the available PVD servers for
a user authentication. The PVD servers stay behind the ser-
vice server and are invisible to the client. A user’s PVD is
shared among the multiple PVD servers and is never recon-
structed during the user authentication. For a user authen-
tication, only a threshold number of PVD servers are re-
quired. If a user authentication is successful, the participat-
ing PVD servers help the service server compute an authen-
ticated session key which can also be computed indepen-
dently by the client program since it has the password typed
in by the user. The management server is used to enroll new
users to the system, reset/regenerate user passwords, and au-
dit system activity.

Communication links. In our system, the communi-
cation links between the service server interface and the
PVD servers are protected. These secure connections are
required for the transfer of session key shares from par-
ticipating PVD servers to the service server and they are
realized through SSL [11], in which the service server in-
terface acts as the SSL client and the PVD servers act as
the SSL server. Both the SSL client and server authenti-
cations are enabled. The connections between the manage-
ment server and the PVD servers are also protected through
SSL, in which the management server acts as the SSL client
and the PVD servers act as the SSL server. In these connec-
tions, both SSL client and server authentication are also en-
abled. Over these secure connections the PVD shares are
distributed to the PVD servers after the management server
generates them.

4, System Setup

There are two parameters about the PVD servers, ¢ and
n. n is the number of PVD servers and ¢, ¢ < n, is the
minimum number of PVD servers to be trusted. ¢ is cho-
sen when the system is initialized while n can dynamically
change. The multiple PVD servers are numbered as PVD
server1,2,...,n.

When the system is initialized, on the management
server, four public parameters, (g1,g92,N,q), are gen-
erated where N is a safe prime, that is, N = 2¢ + 1
and ¢ is also a prime. g; and g, are two elements in fi-
nite field Fy and their orders are ¢. g, and g, are ran-
domly chosen so that both the discrete logarithm of ¢,
to the base go (that is, log,, g1) and the the discrete log-
arithm of g» to the base g; (that is, log,, g2) are un-
known.

e The selection of IV and ¢. In our implementation, we
used the prime from the IKE (Internet Key Exchange)
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Figure 1. The intrusion-tolerant password authentication system

Well-Known Group 2 of the modular exponentiation
groups (MODP) (given in Section E.2 of [25]), where
N is a 1024 bit safe prime whose primality is rigor-
ously proved. Thatis, ¢ = (N — 1)/2 is also a prime.

e The selection of g; and g,. Note that in our system, g;
and g, were not generators of Fy and instead, their or-
ders are q. F'y has (¢ — 1) elements of order ¢. That is,
almost half of the elements in Fy has order ¢. Thus,
one can simply pick a random number in Fy and test
if its order is ¢. By repeating this process a couple of
times g, and g- can be found.

The management server also generates another parame-
ter, B = ¢1® mod N where « is a random number in fi-
nite field F,. A Shamir secret sharing is run on 6, § =
a~! mod ¢, to generate shares (61,92, ...,d,)and §;, 1 <
i < n, is securely distributed to PVD server i*. The pub-
lic values 8; = ¢1% mod N, 1 < i < n, are also dis-
tributed to the PVD servers. Moreover, each PVD server is
also equipped with a 1024-bit RSA public/private key pair
(for SSL connections).

The values (g1, g2, g, N, ) are hard coded into the client
program which is also configured with the IP address of the
service server. The service server is configured with the IP
addresses of the PVD servers.

In the intrusion-tolerant password-based system, for
each user, the system has two phases, the user enroll-
ment phase and the user log-in phase. A user will first
register himself with the management server in the user en-
rollment phase. The user log-in phase is used when an
enrolled user wants to access the service server.

i «and 3 can also be generated distributively by the PVD servers, as
described in [14], so that the overall values of o and § never appear at
any single location throughout their lifetime. In our implementation,
« is generated by the management server and then shared among the
PVD servers. The management server erases ¢ from its memory after
its shares are distributed.

Enrollment and PVD Sharing. When a user registers
himself with the management server, he picks a password
p and a user ID, I. The management server picks a ran-
dom value, s, as the salt and the user’s PVD is computed
asx = H(s,I,p) where H is the secure hash algorithm.
Then, a (¢,n) Shamir secret sharing is performed on the
PVD and PVD shares, (x1, x2, ..., x,), are generated. The
values (1, s,z;), 1 <1 < n, are securely sent (via the se-
cure SSL connections between the management server and
PVD servers) to PVD server i.

User Log-in. After a user is registered with the system,
he can perform a distributed PAKE computation (described
in Section 5) to log into the system using the client software
in which (g1, g2, N, ¢, 3) are hard coded. For this step, what
a user needs is his password and the client software.

5. DataFlow

In this section we give the data flow details for the user
log-in scenario, which is summarized in Table 1. Uninter-
ested readers can skip the remainder of this section without
losing the high-level view of the described system.

In the first step of the user log-in, the user types in his ID,
1, and password p to the client program. The client program
sends I to the service server, which forwards I to the avail-
able PVD servers. (Recall that only ¢ PVD servers are re-
quired for a user authentication.) Using I as index, the par-
ticipating PVD servers look up the user’s salt s and PVD
share x;. Salt s is then sent to the service server, which
forwards it to the client. In Step 2, the client computes
x = H(s,I,p). In Step 3, on the server side, with the help
of a subset of the PVD servers, the service server computes
B (see the following paragraph for details) and passes it to
the client. At the same time, the client program generates a
random number, a, in F;; and computes A = g;* mod N.
In Step 4, the client computes S., W1, W using the given



formula (% is a random number in F7) and sends them to
the service server, which forwards them to the participat-
ing PVD servers. The service server uses the subset of PVD
servers to compute S, (see the following paragraph for de-
tails). Note that in step 4, each participating PVD server
contributes to the value of S, and S, is combined only at the
service server. At this point, the client has .S.. and the service
server has S,. The client and the service server use steps 5,
6 and 7 to confirm that S. and S, are equal. In Step 5, the
client computes M, and sends it to the service server, which
checks M; against M| = H(A, B,Wy, W5, Ss). If My #
M, the service server aborts the protocol. Otherwise, the
service server computes M, and sends it to the client. The
client program checks M, against M) = H(A, M, S.).
The client program aborts the protocol if Ms # MJ. Other-
wise, both sides are sure that they share a common value,
S, 8 = 8. = S, and the session key K is derived as
K = H(S). K can be used to protect subsequent commu-
nication between the client and the service server.

The server-side computation of step 3. Let the participating
PVD serversetbe I C {1,2,...,n}, |T'| >t (i.e., the size
of I' is not less than t). B is computed by the participating
PVD servers as follows:

1. Each participating PVD server j generates a random
b in F, and computes B; = g1% x go%1**.r mod N
where \; r are the Lagrange coefficients. PVD server
J then sends B; to the service server.

2. The service server computes B as B =[]
N and sends B back to the client.

ser Bi mod
t or more PVD servers are needed to perform the above
steps. We stress that PVD z is not reconstructed in this step.

The server-side computation of step 4. In this step, the par-
ticipating servers compute S, = A’ mod N where b =
> icr bi- The computation proceeds as follows:

1. Each participating PVD server j, j € T', computes
S; = A% mod N. Server j also picks a random k;,
1 < k; < g, computes (o; = g1%,p; = BF x
S;) mod N and broadcasts them to all participating
PVD servers.

2. Each participating PVD server j, j € T, computes
¢ = (Hjergj)/lef = (Hjerﬂj)/WQ- It then
computes 7; = &% and broadcasts it. Besides 7;,
PVD server j also generates a random r;, computes

v; = g1, w; = &, 1 = H(g1,&, B, nj,v5,w;)),
zZj = 5j X Tj -+ Tj. (Uj,Wj,Tj,Zj) allows other PVD
servers to verify that n; is indeed €% by checking if
Tj :] H(917§7ﬁj7nj7glzjﬁj_7j7§Zj77'_7j).

3. Each participating PVD server j, j € T, verifies the
correctness of all »; that it receives and then computes

v = Ilier n; T and checks if v < ¢ mod N. If the

above equation holds, it will securely send S; to the
service server. Otherwise, it aborts the protocol.

4. The service server computes S = [[;cp S; mod N.

We have the following observations about the above data
flow:

o (Wy,Ws) is the EIGamal encryption of S.. EIGamal
encryption is multiplicative, which allows the partici-
pating PVD servers to verify that value A does come
from a user who knows x before revealing S; =
A% mod N. Technically, A could be g, (or some g;°¢
originated from an attacker who knows c)¥ and thus A®
would be ¢;°, which, if revealed to the attacker, could
be used with B = ¢;° x g2® mod N (sent out in step
3) by the attacker to mount an off-line dictionary at-
tack. To prevent this attack, in step 4 of the protocol,
before revealing A®, the participating PVD servers ver-
ify that (W1, W5) is the EIGamal encryption of A®.
Note that only the user who knows x can construct a
valid set (A, W1, Wy) where (W7, Ws) is the encryp-
tion of A under 5.

e (v;,wj,T;,2;) prevents a (possibly corrupted) partici-
pating PVD server from cheating to bias the decision
of ~ Z ¢ mod N.

e Compared to [29], x is shared among the PVD servers
via a Shamir secret sharing, instead of a DDB94 secret
sharing. As such, for each password, each PVD server
is assigned only one PVD share and this reduces the
management load. g, is used to prevent an active at-
tacker who can spoof the service server from mount-
ing off-line dictionary attacks.

e Inthe protocol, none of the S.., password p and PVD z
is exposed at any single PVD server.

e Inthe protocol, the client side authentication is accom-
plished through the use of g, and the server-side au-
thentication is accomplished through 5.

e A passive eavesdropper may be able to observe (B =
91" x g2, A= g1*, W1 = g1, Wa = ¥ x S..). How-
ever, this does not give him/her any knowledge about
the session key S = g, .

e For an attacker who wants to impersonate a user whose
PVD is z, since the attacker does not know =z, he will
not be able to generate a valid set (A = ¢, %, W1, Wa),
where (Wy, W) is the ElGamal encryption of g;°
and the protocol will stop at Step 5.

e For an attacker who tries to spoof the service server,
he cannot generate a value B in the form of g, x g,*
and at the same time knows b. In this way, the attacker

§  Say, an attacker has corrupted the service server and thus can manipu-
late the value of A.



| Client | | ServiceServer | | PVvD Server1 [ ... | PVD Server n |

1 ER 4 (lookup s, 1) (lookup s, )
2 x=H(s,I,p) £ s
3 Collectively compute

A= ¢g1* mod N g & B = ¢1® x go® mod N
4 S.=(B/g2")* mod N

Wi = glk mod N

Wo=p"xSemod N  H2 AW
Collectively compute
B S, = A’ mod N

5 M) =H(A B,Wi,Wha,5,.) el (verify M-)
6 (verify My) pati Ms = H(A, My, Ss)
7 K = H(S,) K = H(S,)

Table 1. The Data Flow

will not be able to generate a valid message M and as
such the protocol halts at Step 6.

e If the service server is corrupted, the current session
is compromised. However, from the compromised ses-
sion key S, = g1, the attacker will get no knowledge
about the corresponding password p.

e |f an attacker compromises up to (¢t — 1) PVD servers,
he will not be able to mount off-line dictionary attacks.

6. Implementation Details and Performance

In this section, we will give some implementation details
and performance data about our system.

6.1. Somedetails

All the client program, the service server inter-
face, the PVD servers and the management server are
implemented in Java language and wrapped in the
sci . crypt . pake package. The SSL connections are im-
plemented through the IAIK-iSaSiLk toolkit, a SSL pack-
age by IAIK. (More details about IAIK-iSasiLk can be
found at http://jce.iaik.tugraz.at/products/index.php.) To
improve the performance, SSL caching is turned on. The
1024-bit RSA private keys stored on the PVD servers, used
for the SSL connections, are stored as PKCS12 soft to-
kens and are protected by passwords.

6.2. Performance

We ran some tests on the described system and got some
indicative results. Our testing environment comprised sev-
eral PCs with Intel Pentium 4 CPUs. These PCs ran vari-
ous types of Microsoft Windows operating systems includ-
ing Windows XP and Windows 2000 Professional and were

Test over thelnternet | Test over LAN

(t,n) (2,4) (3,4) (2,4) | (3,4)

Log-inTime | / 344 5.683 2697 | 4216
(seconds)

Table 2. Sample Performance

connected by a 100Mbps local area network, which was
located in one university’s campus network. The service
server and the multiple PVD servers were running on these
PCs.

We tested the system in two cases. In the first case,
the client program was running on a Sun workstation with
Ultra-60 CPU and Sun OS 5.9 operation system, which was
located in another university’s campus network (different
from the service/PVD servers). These two university cam-
pus networks were connected through the Internet and there
were 8 intermediate routers between the client program and
the service server. In the second case, the client program
was running on a PC located in the same local area net-
work as the service/PVD servers. Some example configura-
tion files for our tests are given in the Appendix.

In these experiments, we used i t pake as the user name
and alb2c3d4 as the password. (In [31], this password
passed the proactive password checking but still fell prey
to the dictionary attack.) Table 2 gives the performance of
the system for the above two test situations, each with (¢, n)
as (2,4) and (3,4). Table 2 indicates that the intrusion toler-
ance architecture incurs some performance penalty but the
system still performs reasonably well. On the other hand,
significant security improvement has been achieved.



6.3. Further discussions

We observed that, among the system components, the
computation on the PVD servers are the most computa-
tion intensive. The system achieved best performance when
PVD servers were running on dedicated fast computers. On
the other hand, the computation by the service server in-
terface is rather light, which is attractive as the integration
of the service server interface to a service server won’t af-
fect the performance of the service server much.

We observe that the system performance can be further
improved by the following methods.

e Precomputation. From Section 5, we note that the
server-side value B in step 2 is independent of user
log-in attempt and thus, can be precomputed. This will
improve the system performance by about one-sixth.

e When ¢ is small (say, ¢ is 3 or 4), through some stor-
age, the computation of ~ in Step 4.3 can be performed
in a single modular exponentiation.

e Caching mechanism can be implemented by the client
program and the service server interface to quickly re-
sume an old but still valid session, as done in SSL.

7. Operational Considerations

Using multiple servers for system intrusion tolerance im-
plicitly assumes that breaking into multiple machines is
more difficult than compromising just one. To meet this
assumption, extra cautions must be exerted in the system
deployment. In this section, we will discuss several opera-
tional issues.

Sharing of the working folder The working folder where
PVD shares are stored should not be shared to the network.
Otherwise, by breaking into just a few machines (just one
machine is needed if ¢ PVD shares are accessible from that
machine via network-shared folders), an attacker will be
able to steal the PVD shares, recover the shared PVD and
mount off-line dictionary attacks.

PVD share update Since PVD « is shared via a Shamir se-
cret sharing, ¢ or more PVD servers can collectively up-
date their PVD shares while keeping the shared PVD (z)
unchanged. This will add proactive security to the system
[16, 6] and make the system more resilient.

Adding a new PVD server For a multiple-server system, it
is natural that the system administrator may decide to re-
tire one PVD server or add a new one. Since ¢ or more PVD
servers can help a new PVD server generate its PVVD share,
the administrative process of adding a new server can be sig-
nificantly simplified.

Password change For a password authentication system, it
is desirable that a user can change his password. For our
intrusion-tolerant system, the password change proceeds as
follows: the client performs a PAKE log-in with each par-
ticipating PVD server (as opposed to the service server in
the normal user log-in) and establishes a secure channel. It
then sends the PVD shares of the new password via these
secure channels to the participating PVD servers.

The management server In the described system, the man-
agement server is used to generate system parameters and
user management. It can be used to reset a user’s pass-
word but it is not involved in user log-in and user pass-
word change. For security reason, the management server
should typically stay off-line and can be brought on-line
when used.

8. Example Applications

Our described system can be straightforwardly inte-
grated to the Tel net and FTP to enhance their security. It
can also be integrated into password-based web applica-
tions. For web applications, the PVD servers and the man-
agement server can be used without any changes. The
client program and the service server interface can ex-
ist in many forms.

e The client program. To support web browser on the
client side, the client program can be in the form of
Java Applet.

e The service server interface. Our service server inter-
face is written in Java and can be easily integrated into
JSP pages.

Our system can also be extended to store password-
protected credentials [13, 19, 26, 22]. These credentials can
be accessed by a remote entity authenticated by his pass-
word and the user can roam with his password only. For
example, a user’s private key (of a public/private key pair)
can be encrypted by his password and the encrypted pri-
vate key can be shared among multiple servers [28] —
each server has a share of the password-encrypted private
key. The mobile user can retrieve his private key from any
new location by authenticating himself to a threshold of
the multiple servers via his password, establishing secure
connections with the participating servers and downloading
the password-encrypted private key shares. The password-
encrypted private key can be reconstructed and decrypted
for use. To perform the above steps, a user only needs his
password and a reliable client program. For this type of ap-
plications, some changes are necessary to integrate our sys-
tem. The service server interface should be combined into
each PVD server and the client program should be config-
ured with the IP addresses of the PVVD servers. For perfor-



mance reason, the data flow described in Section 5 can be
optimized (details are omitted here due to space constraint).

9. Conclusion

Password-verification data is a value derived from the
corresponding password using publicly known functions
and is typically stored by a single server to authenticate
the user. Previous research has shown that in a password
authentication system, even when a proactive password
checker is used, some passwords are still vulnerable to the
dictionary attack. For these passwords, if the centralized
server is compromised and their PVD is stolen, the attacker
can mount off-line dictionary attacks against them. In this
article, we described an intrusion-tolerant password authen-
tication system, which uses multiple servers to share PVD
and never reconstructs them during user authentications.
Compromising up to (¢ — 1) such servers will not allow an
attacker to mount off-line dictionary attacks and the system
can still function in the presence of some server failures.
We gave the system architecture and some implementation
details. Our experimental results showed that the intrusion-
tolerant architecture achieves high-level security at reason-
able expense.
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Appendix

In this appendix, we give some example configuration
files for our described system.

Example configuration for the server service interface

Ser vi ceSer ver Port =8000

Server. SSL. 1=http://129.174. 87. 243: 8001
Server. SSL. 2=http://134.126. 21. 129: 8002
Server. SSL. 3=http://134.126.21. 157: 8003
Server. SSL. 4=http://134.126. 24. 122: 8004
Trust edCert Fi | e=DenpCA. cer



