
���������
	���
����
	���
����
������������
������������������
�����

John McDermott
US Naval Research Laboratory, Washington, DC 20375

mcdermott@itd.nrl.navy.mil

Abstract

This paper describes an extension to abuse−case−
based security requirements analysis that provides a
lightweight means of increasing assurance in security
relevant software. The approach is adaptable to
lightweight software development processes but results
in a concrete and explicit assurance argument. Like
abuse−case−based security requirements analysis, this
approach is suitable for use in projects without security
experts. When used in this way (without security experts)
it will not produce as much assurance as the more
traditional alternatives, but arguably give better results
than ad hoc consideration of security issues.

1 Introduction

The concept of assurance is unfamiliar, if not alien,
to many current software development projects. The
majority of current software engineering research is
focused on productivity rather than quality. In the 21st

century, market forces and the inertia of accepted
practice result in software produced with little
specification, analysis or design. Even less attention is
paid to assurance practices such as specification, review,
validation, verification, or testing. While this is not good
for quality in general, it is fatal for security. The security
of critical but interconnected (e.g. Internet−based)
systems can depend upon the security of the weakest
interconnected software.

We can improve this situation with an extension to
abuse−case−based security requirements analysis [10]
that provides a lightweight (i.e. the process model has
very few steps and work products, and the steps can be
applied with relatively little rigor.) means of increasing
assurance in security relevant software. The approach
imposes fewer time and resource penalties on software
development processes but results in concrete and
explicit assurance arguments [12]. Like abuse−case−
based security requirements analysis, this approach is
suitable for use in projects without security experts.
When used in this way (without security experts) it will
not produce as much assurance as the more traditional

alternatives, but arguably give better results than ad hoc
consideration of security issues. It is not a high−
assurance approach; it is a lightweight assurance
approach.

Lightweight assurance approaches consume fewer
resources than more complex or criteria−based
approaches, thus they fit better in lightweight
development efforts (but consequently result in less
assurance). Abuse−case−based assurance arguments are
intended for use in situations where a higher−assurance
approach will not be used, for whatever reason. Since the
assurance process structure is simple, it can be used
without adding complexity to simple software
development processes.

Briefly, the abuse−case−based approach produces an
assurance argument as a collection of abuse case
refutations. A set of candidate abuse cases is constructed
at the beginning of the development project. These abuse
cases are refined along with the software. Developers can
construct their assurance argument by refuting each
abuse case refinement. Granularity of refinement, degree
of rigor, and level of assurance can be varied to suit the
project.

1.1 Relationship to Other Work

Abuse−case−based assurance arguments have their
roots in flaw−hypothesis penetration testing, where
testing assumes the presence of a specific flaw and seeks
to confirm it. In general, though not in all cases, flaw−
hypothesis penetration testing takes place after systems
are working. Abuse−case−based assurance arguments are
applied throughout the life cycle of a software product.
Flaw−hypothesis penetration testing always seeks to
uncover flaws while abuse−case−based assurance
arguments usually include abuse cases that are not
intended to uncover flaws, but instead provide an
argument that the security of the implementation is
sufficient. Finally, the approach we are presenting
always uses sequences of interactions between external
actors and the system to describe the effects of potential
flaws under investigation, rather than posing specific
flaws and investigating their potential relationships. Our
results are related to work on general assurance

arguments and Common Criteria.
Our work is related to software fault tree analysis

(SFTA) [9] because both approaches seek to improve
software quality by focusing on behavior that should not
happen. Our work differs in several ways. One of the
most important is that abuse cases may be used
throughout the software development process while
SFTA is applied after the source code is complete. A
significant mathematical difference is that SFTA is
based upon refinement of single undesirable events in
the execution of the software while abuse−case−based
assurance arguments are based upon refinements of
undesirable interactions between the software and its
environment, i.e. sequences. Furthermore, SFTA is
intended to be used by experts while abuse−case−based
assurance arguments can also be used by competent
developers who are not security experts. Some more
technical concepts from software fault tree analysis, such
as the application of predicate transformers to
undesirable postconditions, are adaptable to abuse−case−
based assurance arguments.

Our work is also related to Survivable Network
Analysis (SNA) [6] process, of the CERT Coordination
Center. SNA uses intrusion scenarios which are very
similar to abuse cases. SNA has been successfully
applied in many practical projects and is in production
use. Like our work, SNA is also intended to improve the
security of systems at design time. Our work differs in
that it is intended to produce an assurance argument,
refines abuse cases, and uses refutations. SNA uses a
survivability map that could correspond to an assurance
argument, though it is not intended for assurance per se.
The survivability map addresses architectural features
whereas the refutations may be based upon architectural
features or assurance measures such as verification, or
both. Finally, SNA is intended for use by experts with a
strong background in security engineering. Our approach
could be used in this way, but is also suited for use in
projects that do not have access to a security expert.

Our work is related to the attack modeling of Moore,
Ellison, and Linger [11] because both abuse−case−based
assurance arguments and attack modeling explicitly
consider the resources and skills of the attacker. Attack
modeling distinguishes different attack profiles
according to attacker skills and resources. Attack profiles
parameterize and generalize families of attack trees, on
the basis of commonly applicable architectural reference
models. Attack profiles are meant to organize and apply
security failure data to the design of information systems
and are intended for use by experts. Abuse−case−based
assurance arguments use system−specific abuse cases to
argue the assurance of an information system. Each
abuse case has specific attacker skills and resources.
Assurance is argued with respect to the specified attacker
capabilities.

1.2 Exper ience

Our experience with this approach has been limited
to simple projects carried out by students to construct
assurance arguments for selected components of open
source software. The approach has been very popular
with these students, since it is more intuitive than
traditional approaches exemplified by criteria−based
evaluations, SFTA, SNA, attack modeling, and general
assurance arguments. The students are arguably good
candidates for a method aimed at competent but
unspecialized developers. They have helped uncover
problems in early versions of the approach and applied it
in unusual ways that helped us learn more about it.

The students have been able to discover several
flaws in the software (Linux PAM) that they analyzed
using this method. None of the flaws they discovered
could be characterized as new, because the students were
restricted to working with older versions of the PAM
distribution, for security reasons. This resulted in some
disappointment for the students when they wanted to
announce the flaws they had located, but did make the
case the abuse−case−based approaches work for
moderately experienced developers in poorly structured
situations.

1.3 Abuse Cases

Following McDermott and Fox [10], we define an
abuse case as a specification of a type of complete
interaction between a system and one or more actors,
which we call malefactors. (We allow, but do not
require, the specification of well−meaning but negligent
actors who may inadvertently put the product into an
unsafe state.) The results of the interaction are harmful to
the system, one of the actors, or one of the stakeholders
in the system. A complete abuse case defines an
interaction between some malefactors and the system
that results in harm to a resource associated with one of
the actors, one of the stakeholders, or the system itself.
The malefactors in an abuse case model are the same
kinds of external agents that participate in use cases but
they are not the same actors. In an abuse case, we give a
detailed description of each malefactor. Three
characteristics of each malefactor are critical to
understanding an abuse case: the malefactor’s resources,
skills, and objectives. For example, are the malefactors
working alone, do they have a funding sponsor, or are
they supported by a national intelligence agency? Do the
malefactors have the skills to write Perl scripts? Can they
write device driver code? Are the malefactors counting
coup or do they have specific harm in mind?

An abuse case also describes the range of privileges
that might be abused to complete the case and includes a
short description of the specific harm that will occur as a
result of the abuse.

In our experience, we have developed abuse case

models one step behind the corresponding use case
model:

1. Identify the malefactors.
2. Identify the abuse cases.
3. Define abuse cases.
4. Check granularity, completeness, and

minimality.

2 The Basic Process

Our abuse−case based assurance argument is
developed by a four−step process that starts with the
establishment of some boundaries on the problem:

1. Define the Assurance Problem
2. Construct the Candidate Abuse Cases
3. Refine the Candidate Abuse Cases
4. Refute the Candidate Abuse Cases

In the first step, we define the kinds of harm that the
product or system is supposed to prevent and its
anticipated threat environment, including a use case
model and descriptions of the actors who might abuse
our system. We identify and analyze any security models
that are applicable (in addition to manifest models like
the Typed Access Matrix model, in this step we also
consider the typical "Alice and Bob" cryptographic
protocol descriptions to be security models).

After the assurance problems and applicable security
models have been defined, we identify and construct
candidate abuse cases. We call these candidate abuse
cases because, in an ideal argument, we intend to show
that there are no actual abuse cases. We construct our
candidates following the same approach we use for
security requirements engineering. The last step of abuse
case construction is a coverage analysis that examines
the completeness, granularity, and justification of each
case. Each candidate abuse case then becomes a unit of
work that can be managed just like a system component,
that is, we can assign cases, plan the work that goes with
each one, and track our progress based on the status of
the individual cases. In the next major step the candidate
abuse cases are refined according to the required
assurance. More refined cases yield higher assurance, but
cost more to complete. In our experience, there are three
levels of refinement that are useful: interface−level
abuse cases, design−level abuse cases, and code−level
abuse cases.

In the refutation step, we take each refinement of a
candidate abuse case and argue why it cannot hold. The
refinement of a candidate abuse case, together with the
argument that it cannot hold, is referred to as a
refutation. The complete set of refutations, organized by
their candidate abuse cases, is our abuse−case−based
assurance argument. Again, we intend to finish the
process with no actual abuse cases. Figure 1 shows the

basic process.

Figure 1. Basic Assurance Process

This basic process can be iterative. Discoveries
made during the refinement and refutation steps can lead
us back to construct new candidate cases or even to
revisit the problem definition step. Sometimes, we may
discover that we need new candidate abuse cases in order
to reorganize our assurance argument.

2.1 Defining the Assurance Problem

One important step that we always include in the
problem definition stage is an analysis and validation of
all security models. The end result of this step is an
assumption that all security models do what they are
supposed to do (we avoid saying that the models are
correct) individually and together. If the models are all
taken from the literature or have otherwise been deemed
well−understood, then the analysis is focused more on
understanding the possible interactions between security
models.

In many cases, products are developed without a
specific security model. When there are no security
models, we must analyze the available product or
subsystem descriptions to identify and describe the de−
facto models. De−facto security modeling per se is not a
necessary part of abuse−case−based assurance
arguments, but we have found it to be so useful in
practice that we have not tried to do without it.

In both instances, well−understood or de−facto, we
are concerned with analysis and validation of the security
models and not their implementation. Assuring a
sufficient−quality implementation of the models is
accomplished through the next three steps.

It is more beneficial to define the kinds of harm to
be prevented, describe the anticipated threats, and
anticipate the malefactors during the requirements phases
of a project. However, problem definition is an activity
best overlapped past the requirements phase, into the
design phases of the overall development process. The
chief reason for this overlap is that some design (and
implementation) features imply the possibility of certain
abuses. A design decision to store large amounts of data

abuse
case

refinement

refutation

with confidentiality implies some form of inference
attack. A design decision to use a network implies many
forms of network attacks. Design and reuse decisions
made during the design phase may bring us back to
analyze newly introduced aspects of a de−facto security
model.

If abuse case models have been used in the
requirements phases of a software process, then they are
incorporated into the assurance argument as part of the
problem definition step and are input to the abuse case
construction step.

2.2 Constructing Candidate Abuse Cases

Since refinement increases the number of
descriptions associated with a candidate abuse case, we
must be careful not to have too many initial descriptions.
Limited experience has shown that there is a tendency to
describe some candidate abuse cases in too much detail
and then draw unnecessary distinctions based on the
detail. During the coverage analysis, these unnecessarily
distinct candidates are combined into a more abstract or
less precise candidate that includes the unnecessarily
detailed cases as refinements.

We also need to do some planning during this step.
We must plan to match assurance resources to the
overall problem. In a large assurance argument, we
should also analyze the candidates to rank them
according to criticality and expected effort. Some abuse
cases may deserve more resources than others. Other
candidate cases may be just as critical, but clearly will
not result in as many refinements. Finally, we may elect
to construct some candidate abuse cases that will not be
refined. These cases may be revisited in future assurance
work on the system or product. We may also chose to
define these candidates to influence the future design or
evolution of a product.

Abuse case construction activities are best
performed in concert with the design phases of a
software process model.

We use three heuristic classes of abuse cases to
assist in the construction of candidate abuse cases for
assurance arguments:

� Model abuse: abuse that results from failure to
implement the security model� Bypass abuse: abuse that results from bypassing
security mechanisms� Tampering abuse: abuse that results from
tampering with security mechanisms

Security model abuse cases are descriptions of
model failures, e.g. inability to control properly the
accesses of some subjects to some objects or failure to
follow the rules of a protocol for every principal. The
actors participate in an interaction with the product that
results in a failure of the security model itself. These

kinds of abuse are possible (i.e. the abuse case is
sustained) when the security mechanisms do not function
as specified by the security model. For example, in
Linux PAM [13, 14], the following security model abuse
would be applicable:

Candidate Abuse Case 1:The administrator creates
a configuration file which contains incorrect syntax
for an authorization module. Linux−PAM parses the
configuration file and does not report a problem.
The incorrect syntax puts PAM into an insecure
state. A person who does not have an account
requests authentication with a random password and
is granted access.

We use bypass abuse cases to describe interactions
where harm to the system or its stakeholders results, even
though the security model did not fail. In general, this
will require discussion of the context or environment of
the product. Abuse where the security model itself does
not fail implies the existence of (unprotected) resources
outside the boundaries of the model. This requires
careful attention to the scope of an assurance argument,
since the product environment can be quite large or even
unbounded. An example for Linux−PAM would be:

Candidate Abuse Case 2: A person who does not
have an account requests a remote login via a
service that does not use the Linux−PAM
conversation correctly. The service passes incorrect
data via the conversation and Linux−PAM grants
access .

For an example of an attempt to tamper, let us pick
the following abuse case for Linux PAM:

Candidate Abuse Case 3: The unprivileged user logs
into his or her normal account and runs a PAM−
aware application that causes the current instance
of PAM to enter an insecure state where it always
authenticates any account, including root. The user
then logs out of his or her normal account and logs
into privileged programs, via the damaged instance
of PAM.

2.3 Adversar ial or Cooperative Abuse Cases

It is important to understand the relationship
between assurance argument abuse cases and penetration
testing. Penetration testing may seem to be very similar.
However, penetration testing seeks validated or actual
abuse cases. Assurance arguments based on abuse cases
also may contain some of these abuse cases: adversarial
abuse cases. Adversarial abuse cases are intended to be
sustainable from the start of the assurance argument.
There is another kind of abuse case that is found in
abuse−case−based assurance arguments: the cooperative
abuse case. A cooperative abuse case is intended to be
refuted. That is, based on our understanding of a product,

we anticipate that we will be able to refute the abuse
case. (Otherwise, why build the product?) Each
cooperative abuse case is present in our assurance
argument to

� organize the review and analysis of the product
design and code, and� clarify the results of the assurance process.

So penetration testing does not include tests where we
presume there is no problem, but abuse−case−based
assurance arguments do include (cooperative) abuse
cases, even when we are sure the abuse is not possible.
Our Candidate Abuse Case 1 above might be an example
of a cooperative abuse case, if we had reason to believe
that the Linux−PAM parser rejects configuration files
containing syntax errors. If the parser had been formally
specified and verified to reject syntax errors, then we
could easily include Candidate Abuse Case 1 as a
cooperative abuse case. What is more likely in a
lightweight software development approach is that some
source code analysis of the parser would be deemed
sufficient evidence.

Adversarial abuse cases are present in our assurance
argument to demonstrate adversarial review and analysis
of the product. The number and strength of our
adversarial abuse cases indicates the amount of
adversarial review that has been completed. Candidate
Abuse Case 3 might be an instance of an adversarial
abuse case if we suspect that it is possible or that we lack
evidence concerning the tamper resistance of PAM.
Designing an abuse case as either cooperative or
adversarial relates to the reason for including it, the
abuse case justification.

2.4 Justification

Abuse cases are usually not an exhaustive
description of the possible abuses and the refinements
are likewise probably not exhaustive descriptions of
particular abuse cases. Exhaustive description or
refinement would defeat the purpose of lightweight
assurance. Since we choose to omit some possible
refinements, then each candidate abuse case and each of
its refinements should be justified. A justification
explains why the particular abuse case is worth
investigating. A justification should also explain how its
case or refinement contributes to the overall assurance
argument. Justification can be based on the intended
security models of the system or on the security policy
the system will enforce. These kinds of justifications will
usually be brief; no longer than the abuse case they
support.

2.5 Refining Abuse Cases

Refinements add details to candidate abuse cases.

These added details allow us to distinguish sub−cases to
provide greater coverage and more assurance in our
argument. We have worked with three levels of
refinement: interface−level, design−level, and code−
level refinements.

2.6 Inter face Level Refinement

Interface−level refinement of an abuse case adds
detail to the malefactor’s inputs and the product’s
responses. Unlike the more elaborate design− or code−
level refinements that trace through components or
sequences of code, interface−level refinements refine a
candidate abuse case as a black−box specification.
Components and code sequences are not specified.

If we consider our first example abuse case, we see
that just a few more details can produce many interface
level refinements. Our first refinement adds concrete
detail to the abstract notion of incorrect syntax,
specifying where and how the syntax will be incorrect.
(The description of module type refers to a concept that
is visible at the user interface, rather than a specific
module of the PAM code.)

Refinement 1.1: The administrator creates a
configuration file which contains incorrect syntax
for the control−flag of a module of type auth.
Linux−PAM parses the configuration file as though
the control−flag is the string "optional" and does not
report a problem. The incorrect syntax puts PAM
into an insecure state. A person who does not have
an account requests authentication with a random
password and is granted access.

Our second example also specifies a more concrete
notion of incorrect syntax. It also elaborates the
description of PAM’s response to the incorrect syntax.

Refinement 1.2: The administrator creates a
configuration file which contains incorrect syntax
for an authorization module. The incorrect syntax is
intended to stack the two authentication modules
pam_warn and pam_deny but a malformed module−
type string (e.g. aucc instead of auth) in the second
entry causes Linux−PAM to parse the second entry
in the configuration file as not being an
authentication module and does not report a
problem. This incorrect syntax puts PAM into an
insecure state, that is pam_warn will execute but
access will be granted. A person who does not have
an account requests authentication with a random
password and is granted access after being given a
warning that the service is not configured.

Our third example shows a refinement that has a
small problem. The refinement is a specific case of its
parent candidate abuse case; a refinement that is distinct
from Refinements 1.1. and 1.2. The concept of module

path is part of the user interface to PAM. However,
Refinement 1.3 should be more specific in its description
of the incorrect configuration file syntax that leads to a
bad module path.

Refinement 1.3: The administrator creates a
configuration file which contains incorrect syntax
for an authorization module. The syntax error
results in an incorrect module path. Linux−PAM
parses the configuration file, loads the wrong
module, one that will return success on very simple
random passwords, and does not report a problem.
A person who does not have an account requests
authentication with a random password and is
granted access.

2.7 Design−Level Refinement

In a design−level refinement, we add details in
terms of the modules, operations, or classes of a system,
to an interface−level refinement. The descriptions of
system responses are elaborated in terms of the functions
or class operations that are invoked. In our limited
experience, we have found it is better to work from
interface−level refinements rather than try to refine a
candidate abuse case directly into a design−level
refinement. This allowed us to organize design−level
refinements by their associated interface−level
refinement. Working from interface−level abuse cases
also allows us to focus our analysis on component
interaction rather than dividing attention between
concrete syntax and design behavior. Here is an example
design−level refinement of the interface−level
refinement 1.1:

Refinement 1.1.1: The administrator creates a
configuration file which contains incorrect syntax
for the control−flag of a module of type auth. The
interaction between functions
"_pam_parse_conf_file" and "_pam_assemble_line"
parses the configuration file as though the control−
flag is the string "optional" and does not report a
problem. The incorrect syntax puts PAM into an
insecure state. A person who does not have an
account requests authentication with a random
password and is granted access.

We have found that some diagramming is useful in
constructing design−level refinements. In our limited
experience, we have used (abused, since Linux PAM
does not have an object−oriented design) UML
component diagrams [1] and also the robustness
diagrams of Jacobson’s Objectory process [7] to describe
design−level abuse cases.

2.8 Code−Level Refinement

In a code−level refinement, the interface− or

design−level abuse cases are elaborated into traces or
symbolic execution of the relevant code. There are
many potentially useful forms of code−level candidate
abuse cases. We have used code−level refinements of
abuse cases as sustained adversarial abuse cases. These
code−level refinements served as place holders in the
assurance argument, for problems discovered by the
assurance team. These refinements could only be refuted
by changing the design or code of the system. We have
also used code−level refinements that are essentially just
more detailed descriptions of design−level refinements.
As an example of this kind of refinement, our interface−
level Refinement 1.3 can be expanded into a code−level
refinement by tracing a sequence of function calls that
Linux−PAM would make to parse a configuration file.
The sequence could suggest how incorrect results
returned by _pam_StrTok, in _pam_parse_conf_file
could cause the problem described in case Model Abuse
1.3.

The sequence of responses described by the
refinement must not change the actor’s inputs or
responses. Following our example above, the code−level
refinement could not change the actor’s responses in
order to cause _pam_StrTok to fail. However, it would be
acceptable to add details about the actor’s input, if that
detail is necessary to trace through the code.

If a problem is discovered in the code, but it depends
upon malefactor (or actor) input that is not covered by
the basic candidate abuse case, then a new candidate
abuse case should be added to the argument. If resources
are available, it may be useful to look for other
refinements of this new candidate abuse case.

2.9 Refutation

The goal of the refutation step is to discover one or
more refutations for each refinement. In other words, we
expect to complete the assurance process by showing that
none of the candidate abuse cases hold.

We have found it useful to assume that there are two
kinds of refutations: mechanism refutations and
assurance refutations. In a foundational sense, the
distinction may or may not be clear, but it has been a
useful heuristic for us. Refutation by mechanism applies
to direct policy violations: we refute the candidate abuse
case by explaining how the applicable security
mechanisms work to prevent the policy violation.
Refutation by assurance applies to candidate abuse cases
based on flaws in, bypassability of, or tampering with
security mechanisms.

Refutations can be made at different confidence
levels. An assurance team may decide to refute an abuse
case at the interface level, without constructing any
design−level refinements. This would provide less
assurance than a set of design−level refinements of the
same abuse case.

Refutations can be constructed by conventional
reasoning techniques. The two most frequent approaches
would be by counterexample and by contradiction.
Abuse case counterexamples are sequences of
interactions between the product and its actors, just like
abuse cases (and use cases). A counterexample for a
particular abuse case contains exactly the same actor
events as the abuse case. However, the counterexample
includes one or more responses from the product that are
different from the abuse case. These distinguished
responses show where the product would prevent the
abuse. For a counterexample to Model Abuse 1.1 above,
we might provide

Counterexample −Model Abuse 1.1: The
administrator creates a configuration file which
contains incorrect syntax for the control−flag of a
module of type auth. Linux−PAM parses the
configuration file as though the control−flag is
unrecognizable and does report a problem. The
incorrect syntax puts PAM into a state fail secure
state. A person who does not have an account
requests authentication with a random password
and is denied access.
Here we might find a simple argument for our

counterexample such as
Argument: Source code review of pam_handlers.c
and pam_dispatch.c by Ralph C. and Ed N.

A more convincing argument would appeal to a
rigorous interface specification, a trace through the
sequences of execution that would be followed if the
control−flag syntax was incorrect, a Cleanroom
verification [8], or we could construct suitable
postconditions and push them back through the
applicable code or specifications. We omit an example
of this, as it has little interest for readers who do not
have the complete source code immediately at hand.

It is helpful to provide multiple refutations. Multiple
refutations can be made on the basis of distinct
counterexamples. This increases assurance because it is
less likely that all of the counterexamples will be
incorrect. Multiple refutations constructed by different
parties are also helpful, since these bring distinct
perspectives and experiences to bear on the abuse case.

Sometimes an abuse case is sustained. A sustained
abuse case is a flaw in the product; an abuse case that
can actually occur. Confirmation of the abuse may occur
at any point in the assurance process. Once a valid abuse
case has been discovered, there are two options: change
the system to make refutation possible or leave the flaw
in place and manage the residual risk. If we believe that
we have a sustained abuse case that remains after the
assurance process is complete, then we refer to it as an
actual abuse case or simply as an abuse case.

3 Application

There are several issues to consider in the
application of abuse−case−based assurance arguments.
Abuse−case−based arguments are suitable for projects
with short schedules or small assurance budgets because
they are simple. Having the assurance argument
organized as a collection of abuse case refutations also
helps us to manage project costs during the development.
Abuse cases constructed during design and development
lead naturally into penetration testing. Finally, we have
the skills, resources, and motives of the malefactors
recorded in the candidate abuse case. This makes it
easier to understand the intended strength of mechanism
in the target system.

3.1 Cost Management

We can increase the assurance of our argument by
creating more refinements and we can reduce the cost of
our argument by creating fewer. We can also reduce cost
by creating abuse case refinements but not refuting them.
These abuse cases can be marked as unknown and left
for future investigation or penetration testing, when more
resources become available. These unknown or unrefuted
abuse cases also serve as easily understandable indicators
or units of residual risk. Residual risk can then be
managed in a way that is more understandable to users
and customers.

Abuse cases and their peer refinements are logically
independent of each other. We can treat abuse case
refinements: interface−, design−, or code−level, as units
of a work breakdown structure. We can also treat each
refutation as a work breakdown unit. This facilitates
management of resources and schedule with less
emphasis on the difficulty of assuring a security property
(e.g. confidentiality) that may describe many abuse
cases.

3.2 Integration with Penetration Testing

Penetration testing relates to abuse−case−based
assurance arguments through the refutations. We can
apply conventional flaw−hypothesis or attack−tree based
penetration testing and specify the results as validations
or refutations. We can also have the penetration testers
attempt to validate an abuse case refinement from our
assurance argument.

3.3 L inking Assurance to Malefactors

An abuse−case−based assurance argument makes an
appeal to the skills, resources, and objectives of the
attackers that are to be thwarted. While this is possible
with other assurance approaches, and has certainly been
considered in specific projects, it has not been done as an
organized part of an assurance process. Abuse cases

provide an easy and natural means of connecting
assurance (i.e., refutations) to specific classes of
malefactors. The explicit connection here is that it is
relatively easy to match level of effort, per refutation,
and per abuse case, to the anticipated effort of the
malefactor. To see how this works, suppose we
anticipate a malefactor who will use a team of three
people, each with an advanced technical degree and ten
years of security experience, working for six months, in
an attempt to leak information stored in the database part
of our system, by exploiting a flaw in it. We can now
discuss how many and what kind of developers will be
working, for how long, to assure the frustration of the
specified malefactor’s attacks on the database
component. We understand that matching assurance
effort to malefactor effort is a complex topic with many
issues that we have not addressed. Using abuse cases
allows us to partition the problem, so that the complexity
is limited to analysis of a specific abuse case.

3.4 Extreme Programming

Abuse−case−based assurance arguments can be
useful as part of a lightweight software development
approach. As an example of a lightweight approach, we
choose the extreme programming process [3, 4]. In a
world (we argue the real one) where most software is
developed using a "code and fix" paradigm, lightweight
process models are beneficial because they introduce
some discipline where there was none before. In
practice, we believe that extreme programming is
arguably [2] a "least suitable" process model for
developing software that has security requirements.
Nevertheless, for the same reasons that lightweight
process models are beneficial to chaotic software
development, lightweight assurance arguments can be
beneficial to assurance−poor methodologies such as
extreme programming. (The reader unfamiliar with
extreme programming may find it more helpful to review
the materials posted at www.extremeprogramming.org
than to locate the cited references.)

The assurance problem definition activities (the first
step of abuse−case−based assurance arguments) can be
combined with the creation of user stories and release
planning activities of extreme programming.

The candidate abuse−cases can be created (the
second step of abuse−case−based assurance arguments)
for each user story at the beginning of each development
iteration, at the same time iteration plan is created.
During the iteration planning step, the customer (sic) can
choose the number of candidate abuse cases to be
considered, and also the level and number of refinements
desired for each abuse case. Responsibility for
constructing the abuse case refinements and refutations
can be allocated to task cards, just like development
tasks.

Abuse cases can be refined during the development
of the user stories, as planned on the task cards. As
software is developed to implement the user stories, the
associated abuse cases can be refined as planned. (This is
the third step in abuse−case−based assurance arguments.)

Each user story (viewed as a unit of work
breakdown) is not considered completed until the
software implementing the user story has passed all its
acceptance tests. Acceptance tests are designed and
implemented during a development iteration. We can
add an acceptance condition to the testing activity:
require a customer approved refutation for each abuse
case refinement. This is the key to incorporating abuse−
case−based assurance arguments into the extreme
programming process model. The abuse−case
refinements for each user story must be refuted before
the associated software is accepted. As in other process
models, acceptance tests may be used for refutations but
it is not necessary to have acceptance tests for each
refutation.

The following table summarizes the incorporation of
abuse−case−based assurance arguments into extreme
programming.

Abuse−Case−Based
Assurance Argument

Extreme
Programming

Define Assurance Problem Release Planning

Construct Candidate Abuse
Cases

Iteration Planning

Refine Candidate Abuse Cases Development Iteration

Refute Candidate Abuse Cases Acceptance Testing

We believe that abuse−case−based assurance
arguments will never make extreme programming into an
approach that produces high−assurance (or possibly even
moderate assurance) software. Extreme programming is
based on incomplete and ambiguous specifications called
user stories. User stories are restricted to natural
language and required to be extremely brief. However,
abuse−case−assurance arguments are sufficiently simple
that they can be used to gain assurance, without
overburdening this lightweight approach.

4 Conclusions

Abuse−case−based assurance arguments are a
lightweight approach to security assurance. They do not
provide better assurance than conventional deductive
assurance arguments or criteria−based evaluations. They
do provide a straightforward approach for some security
analysis and assurance argument in relatively
unstructured projects. They can also be useful in
providing some assurance to projects that lack resources

for completing criteria−based evaluations or deductive
assurance arguments.

The simplicity of the approach makes it useable by
technically capable developers who are not security
experts. Security experts on projects that lack resources
or have tight schedules can also use this approach.
Beyond the inductive nature of its argument, it contains
nothing that limits the current body of knowledge. To a
certain extent, security experts can compensate for the
inductive nature of the argument by increasing the level
and quality of refinement. Where projects have limited
schedules, the ability to modify an assurance argument
by varying the number of refinements constructed or
refuted can be useful.

The explicit discussion of each malefactor’s
characteristics can make both the target system’s
security and its companion assurance argument more
understandable to users and customers. This discussion
of malefactors makes assurance arguments useful for
integration of systems from products and also for
analyzing the configuration and operation of an
installation.

Abuse−case−based assurance arguments may be a
good way for engineers to apply attack profiles [11] to
the design of specific systems. Attack profiles can be
used to guide or justify the choice of candidate abuse
cases. Attack profiles can provide a basis for
understanding abuse cases that are not addressed in the
design or assurance of an information system. The
abuse−case−based assurance arguments can be a
mechanism for relating specific security failure data to
existing attack profiles.

5 Future Work

At present we are investigating three issues in
abuse−case−based assurance arguments: the use of
program slices [5] for code−level refinements, actual
application of abuse−case−based assurance arguments to
extreme programming, and matching assurance effort to
malefactor effort.

We would also like to see or do some work on
relating abuse−case−based arguments to certification
efforts. It is not clear how this could be done for
something like the Common Criteria, because
incorporation of all the steps and work products would
destroy the lightweight nature of the approach.

Acknowledgments

Chris Fox and the anonymous referees made notable
contributions to this paper. Judy Froscher of NRL
supported and encouraged this work while the author was
at James Madison University.

References

1. ALHIR, S. UML in a Nutshell. O’Reilly, 1998.

2. ARTHUR, J., GRÖNER, M., HAYHURST, K., and
HOLLOWAY, C.M. Evaluating the effectiveness of
independent verification and validation. IEEE Computer, 32,
10, October 1999, pp. 79−83.

3. BECK, K. Extreme programming. IEEE Computer, 32, 10,
October 1999, pp. 70−77.

4. BECK, K. Extreme Programming Explained. Addison−
Wesley, 1999.

5. BERZINS, V. Software Merging and Slicing, IEEE
Computer Society Press, 1995.

6. ELLISON, R. LINGER, R., LONGSTAFF, T. and MEAD,
N. Survivable network system analysis: a case study. IEEE
Software, July/August 1999, pp. 70−77.

7. JACOBSON, I. Object−Oriented Software Engineering: A
Use Case Driven Approach, Addison−Wesley, 1992.

8. PROWELL, S., TRAMMEL, C., LINGER, R. and POORE,
J. Cleanroom Software Engineering: Technology and Process,
Addison−Wesley Longman, 1999.

9. LEVESON, N. Safeware: System Safety and Computers,
Addison−Wesley, 1995.

10. McDERMOTT, J. and FOX, C. Using abuse−case models
for security requirements analysis. Proc. Annual Computer
Security Applications Conference, December 1999.

11. MOORE, A., ELLISON, R., and LINGER, R. Attack
Modeling for Information Security and Survivability,
CMU/SEI−2001−TN−001, March 2001.

12. MOORE, A. and PAYNE, C. Increasing assurance with
literate programming techniques. Proc. 11th Annual
Conference on Computer Assurance, June 17−21, 1996.

13. MORGAN, A. The Linux−PAM Module Writer’s Guide,
January, 2001. Linux Kernel Archives.

14. SAMAR, V. and SCHEMERS, R. Unified Login with
Pluggable Authentication Modules (PAM), OSF Request for
Comments 88.0, October, 1995.

