Denial of Service Protection

The Nozzle

Elizabeth Strother
North Carolina State University
epriggin@eos.ncsu.edu

August 29, 2000

Abstract

A denial of service attack is a dominating conver-
sation with a network resource designed to preclude
other conversations with that resource. This type of
attack can cost millions of dollars when the target
is a critical resource such as a web server or domain
name server. Traditional methods, such as firewalls
and intrusion detection systems have failed to pro-
vide adequate protection from this type of attack.
This paper presents a new protection method called
a nozzle. The nozzle is based upon favorable aspects
of firewalls and network pumps. It is deployed similar
to a firewall such that all conversations from an un-
trusted user to a critical resource are monitored. The
main advantage of the nozzle is the ability to provide
a threshold for trusted traffic thus precluding new at-
tacks. A nozzle consists of a series of rings. Each of
which has a trusted and untrusted buffer, rules for
packet placement, and rules for communication with
the next level. Rings are placed in the protocol stack
so they can protect particular protocols.

1 Introduction

The process of communicating with a computer sys-
tems with the intent of degrading other communica-
tion or obtaining unauthorized information is called
an attack on the system. An attack aimed directly
at degrading or obstructing communication to a com-
puter is called a Denial of Service (DoS) attack.

When the target of such an attack is a critical re-
source such as a company’s web server, the attack
can cost the company millions of dollars in poten-
tial revenue. A report released by the Yankee Group
(www.pcworld.com) estimated that during the week
of Feb. 6, 2000, victims costs exceeded 1.2 billion
dollars due to this type of attack.

What can be done to protect ourselves? The pur-
pose of this paper is to suggest a scheme for provid-
ing protection from DoS attacks. Section 2 describes
the DoS attacks in more detail, allowing the reader
to become familiar with the terminology and defini-
tions. Section 2 also provides some concrete exam-
ples of attacks so the user can realize how an average
user could launch a DoS attack. Section 3 describes
some conventional methods for dealing with DoS at-
tacks. This section points out each methods short
comings as well as its benefits. Section 4 introduces
our method of preventing DoS attacks and discuss
the design, benefits and drawbacks of the method.
Section 5 concludes this paper with a discussion of
future research.

2 The Attack

DoS attacks can be geared towards exploiting a prod-
uct defect. Examples of this type of attack are the
“bonk” and the “Ping of Death” attacks. The bonk
attack exploits a defect in certain IP (Internet Proto-
col) implementations. The defect is a lack of bounds
checking when reassembling an IP packet. IP packets

Afttack
Fragment Hdr Payload
Frag #1
Hdr Payload
Frag #2
Hdr Payload
Frag#3
Hdr Payload]
—
Hdr Frag #3
7 r
1Y
-1 Frag #1 // Frag#2 B
T/A

Figure 1: Bonk attack

can be a very large size. When the packet is transmit-
ted, it is encapsulated in the framing structure of its
current media. For example, if the workstation is on
an Ethernet segment, the TP packet is encapsulated
in an Ethernet frame. FEach media has a maximum
frame size that it can transmit. Packets which would
produce a frame larger than the maximum frame size
must be divided into 2 or more packets such that the
obey the maximum transmission size. This division
of the packet is referred to as packet fragmentation.

Each fragment contains information necessary to
reassemble the fragment into the original data. This
information includes its offset the original packet. For
example, figure (1) shows four packet fragments. The
first three fragments are 600 bytes each and the last
fragment is 200 bytes. The first fragment’s payload
should be placed in bytes 0-599; the second in bytes
600-1199; the third in bytes 1200-1799; and the last in

bytes 1800-1999. The “bonk” attack exploits the lack
of bounds checking by sending fragments with offsets
that do not align. In figure 1, an attack packet is
shown in the reassembled packet. The attack packet
would solicit a starting position of byte 1549 in the
original packet. This would make reassembly of all
the packets impossible since the positions overlap.
Certain operating systems will not handle this prop-
erly and will stop further communication until the
system is restarted.

The “Ping of Death” attack exploits another soft-
ware defect. This attack is aimed at the ICMP echo
request (ping) software. Echo is a function designed
to send a packet for the purpose of determining con-
nectivity. If data is sent in the payload of the ICMP
request, the response echos the data back to the re-
quester. This protocol is often used with a small
payload to provide a fast, low bandwidth test of con-
nectivity. Because of this typical usage, some soft-
ware does not handle large payloads. If it receives
an ICMP request packet with a payload greater than
4000 bytes the software generates an exception and
halts communication on the network. These attacks
will not work on all applications and are considered
defects in particular software implementation. There
has been much research geared towards designing de-
fect free software [6][7][8] and this paper is not de-
signed to cover this area of research. Therefore, the
class of DoS attacks which exploit software defects
will not be examined in this paper but the nozzle
does allow for configuration to block such attacks.

A more serious class of attacks is one which exploits
vagueness or omissions in a protocol specification be-
cause it affects all implementations. A well-used ex-
ample of this class of attack is the “smurf” attack. IP
has several required fields which are specified in the
packet header. The designers specified that one of
the required fields specify the senders IP address so
that replies or acknowledgments could be returned
to the sender. The senders address does not have
to be accurate though. The routing used with TP
does not guarantee that the senders address is cor-
rect. The Internet Protocol is designed to route on
a hop by hop basis to provide a manageable config-
uration and also allow for fluctuations in the routing
structure. To accomplish this diversity, only the next

hop routing information is stored. That is, a router
only knows the next machine to pass the packet to
and has no knowledge of where the packet has come
from. To protect against false address, egress routing
has been suggested [3]. In egress routing, the router
keeps track of what source addresses it expects to
leave on its outbound network interface. If it sees
an address other than what it expects, it discards it.
This solution, however, contradicts the flexible dy-
namic routing designed in IP networks. The range of
addresses that might traverse the router are subject
to change and the routers are designed to provide
this flexible configuration. Therefore, with all soft-
ware written error free and in accordance with the
specification, a user can claim a bogus address and
the true identity will be untraceable. A DoS attack
called “Land” can be launched where the sending ad-
dress is equal to the destination address and thereby
establish communication in a loop on the victim ma-
chine. If this communication is designed to pass a lot
of traffic the victim’s resources can be consumed talk-
ing to itself and thereby block outside conversations.
This type of attack is possible because the specifi-
cation did not design any authentication methods to
verify the senders address.

The most common type of DoS attack is designed
to attack a well designed protocol and a defect-free
application by generating a workload which can not
be sustained by the system. A common example of
this type of attack is the “Syn flood” attack. The
TCP protocol is designed to provide reliable com-
munication for an application. This means that if a
packet gets dropped on the network, TCP will de-
tect this lose and request retransmission. TCP sends
the sender an acknowledgment of receipt when it re-
ceives the data. If the sender does not receive this
acknowledgment within a specific time period, the
packet is retransmitted. To establish the connection,
the sender sends a packet called a SYN packet (this
is a request for synchronization). Upon receipt, the
destination or receiver sends an acknowledgment that
it received the SYN request and also sends its own
request for synchronization (ACK-SYN). The origi-
nal sender then acknowledges the receipt of the re-
ceivers SYN. This is called a three way handshake.
Once this is complete, reliable communication can be

Source Destination

SYMN Req
T
| Attack
f\Eﬂ Sequence
! SN+

Ack
T
LA Normal
E Sequence
SYN Ack

Figure 2: Syn Flood attack

conducted. However, before the handshake is com-
plete, the receiver has no idea how long the propa-
gation delay is between itself and the other machine.
Therefore, once sending the ACK-SYN packet, it will
wait longer than usual (often up to 2 minutes) to re-
ceive a response. An attacker can take advantage of
this wait period by sending SYN request packets and
not responding to the ACK-SYN packets. See figure
(2). The receiver will have to store information neces-
sary to correlate the expected ACK response with the
packet sent. There is a limited amount of space avail-
able for this storage so if enough packets are received
this space will be exhausted and the machine will
cease to receive any additional SYN request. There-
fore, no valid connections can be made during this
period. This type of attack basically exhausts a lim-
ited resource by producing more requests than the
machines expects to receive.

We now have a good understanding of the types
of attacks that we are attempting to guard against.
We are concerned with attacks which exploit vague-
ness and omissions in communication specifications
and attacks which exhausts resources. Software de-
fects need to be guarded if they involve defects in the
communications system. Before presenting our solu-
tion, we will examine other solutions and investigate
their strengths and weaknesses.

3 Conventional Protection

In today’s networks, there are several methods or
products which are designed to preclude DoS attacks.
These methods include deploying firewalls to restrict
incoming traffic, Intrusion detection systems to de-
tect known attacks, and network pumps to minimize
DoS attacks in multi-level secure systems. We will
examine the benefits and drawbacks of each of these
solutions.

A popular yet often ineffective means of providing
protection is a firewall. A firewall is a workstation
deployed between the company’s network and the In-
ternet. A firewall can examine any packet moving
between the internal network and the Internet or a
firewall can be configured to serve as a proxy for com-
munications. A firewall is designed to limit the in-
coming traffic thereby reducing the risk of an attack.
However, as mentioned earlier in this paper, there
is no guarantee that the source address in a packet
is valid so any filtering based on source address is
subject to vulnerabilities. A firewall also provides no
method of limiting valid traffic such that a machine
is not simply overwhelmed with requests.

Firewalls, however, are based upon a valid premise.
If there is no need for traffic to access the network,
there is no reason to allow the traffic on the net-
work. If only HTTP (HyperText Transfer Protocol)
is allowed from the Internet, there is no need to pass
ICMP or UDP traffic. This reduces the type of at-
tacks which can be targeted to the network. This
in no way provides a complete solution. Configuring
a firewall to block traffic based upon source address
precludes only the most novice attacks while config-
uring the firewall to limit the type of traffic allowed

on the network reduces the attack set. Therefore,
limiting the type of traffic is a beneficial solution.

A newer method for detecting network attacks is
to monitor the network for known attack signatures
using an Intrusion Detection System (IDS). An at-
tack signature is a sequence of events which is known
to occur prior to an attack. For example, the “Ping-
O-Death” attack mentioned earlier in this paper has
a signature of an ICMP echo request with a payload
exceeding 4000 bytes. An ID system could be config-
ured to monitor the network for such a packet. If one
is detected, the IDS could remove the packet from the
network and generate an alarm indicating that an at-
tack has been detected. An ID system which drops
packets matching known attacks reduces the set of
attacks but the attack signature must be known in
order the for the IDS to be effective. Attackers are
devising new attacks everyday and there is no way
of knowing the attack signature until the attack has
attacked at least one site.

ID systems which police traffic for attacks signa-
tures are known as knowledge based systems. If the
system has the ability to learn attack signatures, it
is called a behavior based ID system. The concept of
learning the attack signatures such that the system
remains up to date with little human interaction is
a wise idea. The problem is that this learning must
take place in real time as the packets are traversing
the network. Any delay in processing can greatly
impact the quality of service or allow for security ex-
posures. Another problem with behavior based 1D
systems is false positives reports. Whenever a sys-
tem attempts to learn a behavior at the same time
as guarding against the behavior it runs the risk of
falsely identifying an occurrence. In most networks,
the number of false positives must be sufficiently low
S0 as to not disrupt normal communications.

A Network Pump has been used to protect MLS
systems from DoS attacks and provide some level
quality of service for its users [5]. A multi-level secure
system (MLS) is a system in which devices are cat-
egorized as high or low. High devices are regarded
as the sensitive machines which should not expose
information to machines of a lessor sensitivity (low
machines). High devices are only allowed to send ac-
knowledgment information to low devices but they

can communicate sensitive data with other high ma-
chines. Low machines can send any level of data tc
any machine. The network must ensure that high ma-
chines do not send sensitive data to low machines us-
ing a covert channel. A covert channel is a connectior
which hides data within valid messages. For example.
a confidential file could be sent byte by byte in the
sequence number field of each acknowledgment mes-
sage until the entire file is transferred. The network
pump is designed to protect against covert channels
and DoS attacks. Covert channels are eliminated re-
stricting high machines from communicating directly
with low machines. Acknowledgments are sent to the
low machines directly from the pump which elimi-
nates the possibilities of a covert channel from the
high machine. Use of the pump also enables perfor-
mance metrics such as throughput, fairness and reli-
ability. These measures are needed in order to guard
against denial of service attacks. If a system can not
guarantee a user a certain portion of resources, the
user always runs the risk of being starved from the
system.

The network pump provides connectivity betweer
low machines and high machines. See figure 3. Eact
low machine connects to the network pump. The
pump has a buffer for each link connection. These
buffers can differ in size from one link to another.
Each slot in the buffer is capable of storing one mes-
sage. A low machine transmits a message directed
to a high machine. The network pump receives the
message in the corresponding input buffer. Messages
are removed from the buffer according to a max-min
scheduling algorithm. The max-min scheduling al-
gorithm divides the rates equally if the requests are
greater than a proportional division of the output. If
a queues rate is less than an equal division, it will be
fully satisfied and any remaining bandwidth will be
divided equally amongst the remaining queues. Mes-
sages are removed from the buffer by a trusted low
process (TLP). This process directs messages to the
corresponding output queue based upon the destina-
tion of the message. When a message is successfully
placed on the correct output queue, the TLP sends an
acknowledgment message back to the low machine. If
the input buffer is full, a low machine can not send
another message until a message is removed from the

[

Receiver 1

Receiver |

Figure 3: Network Pump

buffer. This allows the pump to act as a throttle for
traffic. If a high device is in heavy use, the TLP will
not be able to place the message on the output buffer
until the high device has worked thru its queue, thus
the machine can not be overwhelmed by excessive
use.

Since a max-min queuing algorithm is used to fairly
distribute messages, a DoS attack can only be suc-
cessful if all low sides cooperate to launch the attack.
In this case, all the low side machines are attackers
and thus no meaningful message is precluded from
the high side so the attackers have not been suc-
cessful in denying any service. There are however
practical limitations to this solution which make it
impractical outside of this specific application. First,
there must be a dedicated link and buffer combina-
tion for each low side machine and each high side
machine. This is required to ensure fairness amongst

the machines. If we tried to apply this solution to
an Internet connected device, the possible number of
connections could exceed a million. Clearly, the num-
ber of connections is a limiting factor of the system.
In addition to this limitation, the network pump does
not analysis any of the packets for possible attacks. It
assumes that a DoS attack will only occur from over-
whelming the machine and does not consider attacks
based upon faulty software or protocol omissions.

4 The Nozzle Solution

The solution we present for protection from denial
of service attacks incorporates many of the positive
features of the earlier mentioned systems without the
drawbacks. It is primarily a combination of a firewall
and a network pump. Like a network pump, our de-
vice will send acknowledgments and throttle the data
to the servers. However, instead of a dedicated link
for each incoming device, our solution, the Nozzle,
has only one incoming link for all messages and can
drop packets if they do not meet specified criteria,
similar to a firewall.

All traffic from the untrusted network must pass
through the nozzle to reach the protected resources.
A nozzle is comprised of a series of “rings” applied
in a layering fashion. Any ring in the nozzle can be
configured to block traffic based upon certain prede-
fined criteria such as source address or traffic type
just like a firewall. It is this layering concept which
is a unique design point which differs from existing
firewalls. Layering is a familiar concept among com-
puter specialists. This allows them to build upon
previous work. Administrators develop security pol-
icy for different layers of the protocol stack and then
configure the rings accordingly. This layering will
ease the management of the nozzle and allow differ-
ent permissions to be associated with different rings.
For example, rings which are at the application layer
may be configurable by a number of administrators
but lower level rings may require extra security. An
administrator could configure the lower level rings
with special permission which prohibits changes from
other administrators. Current firewall solution only
provide a single level of administrative security. An

administrator either has access to the firewall or not.

Each ring has a trusted buffer and an untrusted
buffer. Data can only be presented to a ring by plac-
ing the message on the untrusted buffer. Each ring
has a configurable policy to move data from the un-
trusted buffer to the trusted buffer. A sweep of the
buffer will occur periodically to move items to the
trusted buffer or perform whatever operation is nec-
essary to determine if the packet can be moved to
the trusted buffer. A ring can be configured to re-
quest additional information from the source thereby
gathering additional information about the source to
determine trustworthiness. Figure 4 depicts a nozzle.

Communication with the final destination can only
occur when a packet is on the trusted buffer. In
this case, the ring must be configured to communi-
cate with the final destination rather than passing
the packet to a higher level ring. If the ring policy
does not specify to communicate with the final des-
tination, the packet is passed to the untrusted buffer
of the next higher ring. Multiple rings can be config-
ured to communicate with the final destination. For
example, if a ring has a policy to pass ICMP traffic
the final destination, it can also have policies to pass
UDP, FTP, or any other criteria. An administrator
should avoid ambiguous policies though. A rings pol-
icy to pass to the untrusted buffer of a higher ring is
evaluated before passing a packet to the destination
so if an ambiguous policy is created, the path requir-
ing a higher level of security will be taken. For exam-
ple, if a ring at the TCP level specifies to pass TCP
sessions to the destination and pass TCP traffic to
the next higher ring, all TCP traffic will be passed to
the higher level rather than to the final destination.

The main advantage to the nozzle is its ability to
limit incoming traffic. Each ring has a configurable
threshold and maintains the average response time
for items held on the untrusted buffer. When the
filled portion of the trusted buffer reaches the thresh-
old, the timeout value for items on the untrusted
buffer will be decreased until either the filled por-
tion drops below the threshold or the timeout values
reaches the average response time for the buffer. If
the timeout value reaches the average response time
for the buffer, a cleaning sweep of the buffer is per-
formed. When a cleaning sweep is performed, the

Ring n
Untrusted Trusted
o Communication
F with destination
Untrusted % Trusted :">
-
Untrusted %D Trusted :>
Lrnsed :F:} e)

|

Incoming message;
possible attack

Proxy communication
with source

Figure 4: Nozzle Diagram

nozzle can be configured to send a management agent
an indication that a sweep is occurring. This can alert
an administrator of an attack or a performance prob-
lem. In the cleaning sweep, each item is either be
moved to the trusted buffer or dropped according to
the rings trust policy. If an item is waiting for some
additional information to determine its trustworthi-
ness, it will be deemed as untrusted and dropped.
Only trusted traffic will remain in any buffer on the
ring after a cleaning sweep. If there is more trusted
traffic than is allowed on the trusted buffer, excess
traffic will be dropped. This allows trusted traffic
to continue when the system is under attack. Also,
when under attack, packets similar to the attack sig-
nature are not automatically precluded from commu-
nicating with the final destination. If the packet is
received anytime other than when a cleaning sweep
is performed, the packet will have an opportunity to
prove it is trustworthy. Since communication with
closer resources will have a lower response time, these
communications are more likely to be accepted as
trusted than devices with higher propagation delays.

A standard input queue consists of a first-in, first-
out design and has a get and put function. Get re-

moves the oldest item from the queue and put pushes
a new item into the queue. Our queues still use
the get and put functions but they act differently.
Our data structure is actually a queue and a buffer.
The queue consists of the trusted traffic, ordered by
a timestamp of when it was placed on the trusted
queue. The buffer contains currently untrusted traf-
fic. It also has a timestamp as to when it was placed
in the buffer. There is a policy that will specify
what criteria must exist of the traffic to be consid-
ered trusted. A get call will remove the oldest item
from the trusted queue. After the item is removed,
it will create a thread that will move as much data
as possible from the untrusted buffer to the trusted
queue. The move will occur if the data has met the
configured trust policy. If the trusted buffer exceeds
its configured threshold, a cleaning sweep occurs. If
any untrusted data has been on the buffer for more
than the timeout period, it is removed. During a
put function, an item is inserted into the untrusted
buffer. After the item is inserted, if the item was
untrusted traffic (according to the policy) a thread
is created and the buffer is searched for other traffic
which might belong to this communication. If addi-
tional traffic is found, all the traffic in this communi-
cation is evaluated to see if it meets the trust criteria.
During the put function, if the item can not be in-
serted onto the untrusted buffer because the buffer is
full, a cleaning sweep is performed.

To demonstrate this solution, we present an ex-
ample of an IP nozzle which is designed to prevent
all the attacks presented in this paper and control
the amount of traffic presented to a machine to avoid
DoS based upon overuse. The first ring in the noz-
zle is placed between the data link layer and network
layer. All incoming IP traffic will be placed on the
untrusted buffer of this ring. Since this example is
an IP nozzle, all non-IP traffic will either automat-
ically be blocked or passed to the final destination
based on the user’s configuration. For this example,
we will assume non-IP traffic is blocked. Our policy
for the trusted buffer at ring 0 will be that all packet
fragments are present and only complete reassembled
messages are passed to the next level. Therefore, if
a packet fragment is received, it will be held in the
untrusted buffer until all packets are received and re-

assembled or until a timeout period has expired.

The next ring level will have 2 rings. One will be
between the IP level (network layer) and the TCP
level (Transport layer). The other ring at this level
is between the IP level and the ICMP level. If a
message is not a TCP message or an ICMP message,
we will configure our nozzle to drop the message. You
could place another ring in between the UDP and IP
levels if desired. In our example, messages from the
trusted IP level (ring 0) can only be passed to the
untrusted buffer leading the TCP stack of ring 1 or
the untrusted buffer leading to the ICMP stack of
ring 1.

On the TCP ring 1, SYN requests will be kept on
the untrusted buffer. A SYN ACK will be sent back
to the source. If the message is not a SYN ACK, the
message will be passed to the trusted buffer of ring
1. If the nozzle receives an ACK for the SYN ACK,
a connection is established with the final destination
using the true source address in the connection estab-
lishment. The nozzle will act as a proxy, masquerad-
ing as the source address to the destination and as
the destination to the source, until the connection
is established. This allows the nozzle to determine
trustworthiness without exposing the source to po-
tential attacks. Once the connection is established,
the TCP traffic is considered trusted and the noz-
zle no longer acts as a proxy. If the source address
fails to fully establish a connection without a speci-
fied time period, the nozzle will reset the connection
is has established to the source.

An initial timeout period of 2 minutes will exist
for the SYN-ACK packets. If the occupied portion of
the untrusted buffer exceeds the threshold value, the
timeout value will be decreased until either the oc-
cupied space of buffer is lower than the threshold or
the minimum timeout value equals the average prop-
agation delay for this ring. If the timeout reaches the
average propagation, a cleaning sweep will be per-
formed on the untrusted buffer. If a message is not a
SYN request, it will be moved to the trusted buffer
else it will be discarded.

If the message is an ICMP request, it will be placed
on the untrusted buffer of the ring leading to the
ICMP layer. This layer is defined to only trust ICMP

echo messages which conform to the average packet

i HTTP
g2 untruste Get Trusted Message;
Re | forwarded to destination
€
~ T
Ring 1 ICMP
—L')echo —'3
yreq< y
5008
SYN+ Ring0] Unfrusted tusted
ACK sent Complete
Fragment
packets
Incoming
message;
possible

attack

Figure 5: Nozzle Example

length. Therefore, the trusted buffer will maintain an
average length field. If the request is an ICMP echo
(request or reply), it will be moved to the trusted
buffer if it does not exceed the average length plus
some defined variance, else it will be dropped.

Ring 3 of our example will be placed between the
TCP level and the HTTP level. In our example, we
will only pass traffic to our interior web site if it is a
HTTP get request or an ICMP echo request. There-
fore, if it is a HT'TP get request, the message is passed
to the source, otherwise, the message is discarded.

From our example, it is easy to see that packet
fragmentation attacks can not be launched against
the protected machines, because all packets will be
reassembled and verified before they are passed to
their final destination. Also, SYN flood attacks can
not be successfully launched since connections are es-
tablished from the nozzle before they are established
with the final destination. The nozzle, itself, is not
susceptible to a syn flood attack since it has a lim-
ited number of buffers for incoming packets. When
the buffer crossed a predefined threshold, the time-
out value will be decreased so that connection re-
quest packets are given a lower service rate than es-

tablished connections. This will allow trusted traffic
to continue to be passed when under attack and new
requests can be established if the requesting machine
has a good response time. The timeout value will
have a minimum value of the average propagation de-
lay. If the timeout is reduced down to this minimum
value and the buffer still continues to fill, a cleaning
sweep with move all connected traffic to the trusted
buffer and discard all connection requests. A “Ping-
of-Death” attack is not possible since the ICMP ring
will maintain an average packet size and discard ex-
ceptionally large packets.

5 Future work

Configuring a set of rings to act as a secure mecha-
nism could be a difficult and tedious task for a net-
work administrator. To reduce the complexity and
risk of misconfiguration, applications should be al-
lowed to configure application level rings. A standard
set of parameters such as average delay and buffer
sizes will be configured by the administrator. Each
ring will be provide a method for communicate with
source devices from the untrusted buffer and to desti-
nation devices from the trusted buffer. The applica-
tion will only need to set the policies for the ring. A
secure protocol must be established to authenticate
applications and grant modification rights to partic-
ular ring levels. This would allow dynamic config-
uration of the nozzle to allow for transient trusted
communications. Since permissions are associated
with different rings, dynamic configuration can be
achieved without exposing the network to security
vulnerabilities.

A ring must be able to perform a cleaning sweep
faster than the time necessary to fill 10% of the buffer.
Ring buffer sizes are configurable and cleaning sweep
times will depend on the policy in place to move
data from the untrusted to the trusted buffer. Due
to these dependencies, much work needs to be per-
formed to provide configuration restriction that keep
timing problems from occurring,.

The nozzle itself must be able to pass traffic from
the incoming interface to the outgoing interface fast
enough that the buffers do not fill up due to its own

performance bottlenecks. Because of this potential
problem, the number of rings should be kept to a
minimal amount. There must be a way of communi-
cating the available throughput to the administrator.
Companies will be reluctant to deploy a device which
inhibits communication without knowing of its per-
formance. Since the nozzle’s performance is depen-
dent on how it is configured, the maximum and mini-
mum throughput must be given to the administrator.
When the nozzle is dropping traffic due to a cleaning
sweep, this means that either the network is under
attack or the nozzle is unable to keep up with the
incoming traffic. The nozzle will generate an SNMP
trap to be sent to a management device so that the
administrator is made aware of the possible attack or
performance problem.

The last problem which needs to be addressed it
the order in which rings are evaluated when thresh-
olds are exceeded. If lower rings are evaluated first,
an attack could be successful. Rings must be eval-
uated from the higher levels down. This will allow
the true attack to be eliminated without dropping
unnecessary traffic. When a new ring is added into
the system, a check needs to be performed to ensure
consistency with the existing policies.

References

[1] Jonathan K. Millen. A Resource Al-
location Model for Denial of Service.
In IEEE Computer Society Symposium
on Research in Security and Privacy,
pages 137-147. Proceedings., 1992.

[2] Durst, Champion, Witten, Miller,
Spagnuolo. Testing and Evaluating
Computer Intrusion Detection Sys-

tems. Communication of the ACM.
July, 1999. Vol. 42 No 7. pp 53-61.

[3] Schuba, Krsul, Kuhn, Spafford, et. al..
Analysis of a Denial of Service Attack
on TCP. In IEEE Symposium on Secu-
rity and Privacy, pages 208-223. Pro-
ceedings., 1997.

[4]

Che-Fn Yu, Virgil Gligor. A Formal
Specification and Verification Method
for the Prevention of Denial of Service.
In 1988 IEEE Symposium on Security
and Privacy, pages 187-202. Proceed-
ings., 1988.

Kang, Moskowitz, and Lee. A Network
Pump. IEEE Transactions on Software
Engineering, Vol. 22, No. 5, May 1996.

Kolkhorst, B.G., Macina, A.J.. De-
veloping error-free software. IEEE
Acrospace and Electronics Systems
Magazine, Vol.3, Issue 11, Nov. 1988,
pp 25-31.

Carnot, M., DaSilva, C., Dehbonei,
B., Mejia, F.. Error-free software de-
velopment for critical systems using
the B-Methodology. Third Interna-
tional Symposium on Software Relia-
bility Engineering, Proceedings., 7-10
Oct. 1992, pp. 274 - 281.

Chmura, L.J., Norcio, A.F., Wicinski,
T.J.. Evaluating software design pro-
cesses by analyzing change data over
time. IEEE Transactions on Software
Engineering, Vol. 16, Issue 7, July 1990
pp. 729-740.

10

